what is the coefficient for fe(s) in the balanced version of the following chemical equation: fe(s) o2(g)→fe2o3(s)

Answers

Answer 1

The coefficient for Fe(s) in the balanced chemical equation Fe(s) + O2(g) → Fe2O3(s) is 4.

In order to balance the equation, we need to ensure that the number of atoms of each element is the same on both sides of the equation.

On the left side, we have 1 Fe atom, and on the right side, we have 2 Fe atoms in Fe2O3. This means we need to multiply Fe(s) by 2 to balance the Fe atoms.

Next, we need to balance the oxygen atoms. On the left side, we have 2 O atoms in O2, and on the right side, we have 3 O atoms in Fe2O3. To balance the oxygen atoms, we need to multiply O2(g) by 3.

Therefore, the balanced chemical equation is:

4 Fe(s) + 3 O2(g) → 2 Fe2O3(s)

From the balanced equation, we can see that the coefficient for Fe(s) is 4, indicating that 4 moles of Fe(s) are required to react with 3 moles of O2(g) to form 2 moles of Fe2O3(s).

Learn more about chemical equation here:

https://brainly.com/question/28792948

#SPJ11


Related Questions

The solubility of PbBr2PbBr2 is 0.427 g per 100 mL of solution at 25 ∘∘C. Determine the value of the solubility product constant for this strong electrolyte. Lead(II) bromide does not react with water.
A) 5.4×10−45.4×10^-4
B) 2.7×10−42.7×10^-4
C) 3.1×10−63.1×10^−6
D) 1.6×10−61.6×10^−6
E) 6.3×10^−6

Answers

The solubility product constant (Ksp) for [tex]PbBr_2[/tex] can be calculated based on the given solubility information.

The solubility of  [tex]PbBr_2[/tex] is given as 0.427 g per 100 mL of solution. To determine the value of Ksp, we need to convert the solubility in grams per liter (g/L).

First, we convert the volume from mL to L:

100 mL = 100/1000 L = 0.1 L

Next, we divide the mass of  [tex]PbBr_2[/tex] by the volume in liters to obtain the solubility in g/L:

0.427 g / 0.1 L = 4.27 g/L

Since  [tex]PbBr_2[/tex] is a strong electrolyte, it dissociates completely in water. Therefore, the concentration of Pb2+ ions and Br- ions in the solution will be equal to the solubility of  [tex]PbBr_2[/tex] , which is 4.27 g/L.

The solubility product constant (Ksp) expression for PbBr2 is:

[tex]Ksp = [Pb^2+][Br-]^2[/tex]

Since the concentration of Pb2+ and Br- ions is the same and equal to the solubility (4.27 g/L), we substitute the values into the Ksp expression:

[tex]Ksp = (4.27 g/L)(4.27 g/L)^2 = 4.27^3 g^3/L^3[/tex]

Calculating the value of Ksp:

[tex]Ksp = 4.27^3 = 77.231 g^3/L^3[/tex]

The answer, rounded to the appropriate significant figures, is approximately [tex]7.7\times10^1 g^3/L^3[/tex], which corresponds to option D) [tex]1.6\times10^{−6}.[/tex]

To learn more about solubility refer:

https://brainly.com/question/23946616

#SPJ11

What is the freezing point, in °C, of a 0.66 m solution of C4H10 in benzene?

FP (benzene) = 5.50 °C
Kf(benzene) = 5.12 °C/m
[?] °C

Hint: Remember significant figures are based on place value when adding or subtracting.​

Answers

The freezing point of the 0.66 m solution of C4H10 in benzene is  2.1208 °C.

How do we calculate?

The freezing point of a solution is:

ΔT = Kf × m

ΔT = change in temperature

Kf = the cryoscopic constant of the solvent

m = molality of the solution

We have the following parameters:

FP (benzene) = 5.50 °C

Kf (benzene) = 5.12 °C/m

m = 0.66 m

ΔT = Kf × m

ΔT = 5.12 °C/m × 0.66 m

ΔT = 3.3792 °C

Freezing Point of Solution = FP (benzene) - ΔT

Freezing Point of Solution = 5.50 °C - 3.3792 °C

Freezing Point of Solution = 2.1208 °C

Learn more about freezing point at:

https://brainly.com/question/30948897

#SPJ1

what is the product of Cu(s) + O₂(g)

Answers

The word equation would be:

Copper solid plus oxygen gas giving solid cupric oxide

Answer:

CuO(s)

Explanation:

This is the product.

at standard temperature, the nernst equation can be rewritten to show that the nonstandard cell potential is equal to the standard cell potential minus:

Answers

The Nernst equation relates the potential of an electrochemical cell to the concentration of the species involved and the temperature. At standard temperature, which is usually taken as 25°C or 298 K, the Nernst equation simplifies to a form that is more commonly used.

At this temperature, the nonstandard cell potential can be calculated by subtracting the product of the gas constant (R), the temperature in kelvin, and the natural logarithm of the reaction quotient (Q) from the standard cell potential (E°).
In mathematical terms, the equation can be written as E = E° - (RT/nF) lnQ, where E is the nonstandard cell potential, E° is the standard cell potential, R is the gas constant, T is the temperature in kelvin, n is the number of electrons transferred in the reaction, F is Faraday's constant, and Q is the reaction quotient.
Therefore, at standard temperature, the nonstandard cell potential is equal to the standard cell potential minus the product of the gas constant, temperature in kelvin, and the natural logarithm of the reaction quotient. This equation is useful in determining the nonstandard potential of a cell at any temperature, as long as the values of Q, E°, and other relevant constants are known.

To know more about Nernst equation visit:

https://brainly.com/question/13043546

#SPJ11

a solution of HCl in water conducts an electric current , but a solution of HCl in hexane does not. explain this behavior in terms of ionization and chemical bonding

Answers

The behavior you described can be explained by the difference in the nature of the solvents and their ability to facilitate ionization and conduct electricity.

What is ionization?

Ionization refers to the process by which a neutral atom or molecule gains or loses one or more electrons, resulting in the formation of charged particles called ions. This process occurs when atoms or molecules interact with external factors such as heat, light, or other chemical species.

When hydrochloric acid (HCl) is dissolved in water, it undergoes ionization. Water molecules are polar, meaning they have a partial positive charge on the hydrogen atom and a partial negative charge on the oxygen atom. HCl, being a strong acid, readily donates a proton (H+) to a water molecule, forming hydronium ions (H3O+). The chloride ion (Cl-) is also present in the solution. These ions, H3O+ and Cl-, are responsible for the conduction of electric current because they can move freely in the solution, carrying electric charges.

In contrast, hexane is a nonpolar solvent. It consists of carbon and hydrogen atoms arranged in a nonpolar covalent bonding. In such a nonpolar environment, HCl molecules do not readily ionize as they do in water. The lack of polar molecules in hexane prevents the dissociation of HCl into ions, resulting in no electric current flow. The chemical bonding in hexane does not provide an environment that promotes the separation of charged species.

Therefore, the ability of a solution to conduct electricity depends on the presence of mobile ions. Polar solvents like water facilitate ionization and create an ionic solution that can conduct electricity, while nonpolar solvents like hexane do not support ionization, resulting in a non-conductive solution.

To learn more about ionization  from the given link

brainly.com/question/20658080

#SPJ4

When constructing a galvanic cell using a standard hydrogen electrode, the SHE always operates as which of the following? Select the correct answer below: A. the cathode B. the anode C. an active electrode D. depends on the nature of the reactants or the nature of the other electrode

Answers

The correct answer is ( A) the cathode. When constructing a galvanic cell, the standard hydrogen electrode (SHE) always operates as the cathode.

In a galvanic cell, the standard hydrogen electrode (SHE) is always used as the reference electrode, and it is conventionally assigned as the cathode. The SHE consists of a platinum electrode immersed in a solution of 1 M H+ ions with a partial pressure of hydrogen gas (1 atm).

The SHE serves as a standard reference for measuring the reduction potentials of other half-reactions in the cell. By convention, the reduction potential of the SHE is defined as zero volts. Therefore, in comparison to the SHE, other half-reactions will have positive or negative reduction potentials.

When constructing a galvanic cell, the standard hydrogen electrode (SHE) always operates as the cathode. It serves as a reference electrode with a defined reduction potential of zero volts.

To know more about cathode, visit:

https://brainly.com/question/29784730

#SPJ11

A sample of an unknown compound contains 0.21 moles of zinc, 0.14 moles of phosphorus, and 0.56 moles of oxygen. What is the empirical formula?

Answers

To determine the empirical formula, we need to find the simplest whole-number ratio of the elements present in the compound.

The mole ratios of zinc (Zn), phosphorus (P), and oxygen (O) in the compound are approximately:

Zn: 0.21 moles
P: 0.14 moles
O: 0.56 moles

To find the simplest whole-number ratio, we can divide the number of moles of each element by the smallest number of moles.

Dividing the moles by 0.14 (the smallest number of moles), we get:

Zn: 0.21 moles / 0.14 moles ≈ 1.5
P: 0.14 moles / 0.14 moles = 1
O: 0.56 moles / 0.14 moles ≈ 4

Rounding these ratios to the nearest whole number, we get:

Zn: 2
P: 1
O: 4

Therefore, the empirical formula of the compound is Zn2P1O4, which can be simplified as Zn2PO4.

how many liters of co2 at stp are produced when 112.2 g of c8h16 are burned? c8h16(g) o2 (g) --> co2(g) h2o (g)

Answers

When 112.2 g of C_{8}H_{16} is burned, 179.2 L of CO_{2} is produced at STP.

The balanced chemical equation for the combustion of C_{8}H_{16}:
C_{8}H_{16}(g) + 12O_{2}(g) → 8CO_{2}(g) + 8H_{2}O(g)
Now, we can determine the moles of C8H16 by using its molar mass:
Molar mass of C_{8}H_{16} = (8 * 12.01) + (16 * 1.01) = 112.2 g/mol
Moles of C_{8}H_{16} = \frac{mass }{ molar mass} = \frac{112.2 g }{ 112.2 g/mol} = 1 mol
From the balanced chemical equation, we can see that 1 mol of C_{8}H_{16} produces 8 mol of CO_{2}. So, we have:
Moles of  CO_{2} produced = 1 mol C_{8}H_{16} * (\frac{8 mol CO_{2} }{1 mol C_{8}H_{16}}) = 8 mol CO_{2}
Now, we can use the conditions of STP (standard temperature and pressure: 0°C and 1 atm) to find the volume of  CO_{2} produced. At STP, 1 mol of any gas occupies a volume of 22.4 L. So, the volume of  CO_{2} produced is:
Volume of  CO_{2} = 8 mol  CO_{2} * 22.4 L/mol = 179.2 L
This means that when 112.2 g of C_{8}H_{16} is burned, 179.2 L of  CO_{2} is produced at STP. Therefore, the correct answer is: b. 179 L

learn more about combustion Refer: https://brainly.com/question/13153771

#SPJ11

complete question:

How many liters of CO2 at STP are produced when 112.2 g of c8h16 are burned? c8h16(g) o2 (g) --> co2(g) h2o (g)

a. 22.4L

b. 179 L

c. 10 L

d. 80.0L

provide the chemical structure for 9-chlorobicyclo 3.3.1 nonane

Answers

The chemical structure for 9-chlorobicyclo 3.3.1 nonane can be represented as follows: [tex]CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - CH(Cl) - CH_2[/tex]

This structure indicates that the compound consists of a chain of seven carbon atoms, each of which is bonded to two other carbon atoms and one hydrogen atom. Additionally, one of the carbon atoms is bonded to a chlorine atom, which is represented by (Cl) in the structure. Nonane refers to a nine-carbon straight-chain hydrocarbon, which is the backbone of the compound. The term "bicyclo 3.3.1" indicates that there are three rings in the structure, with two of them fused together. The numbers in the name describe the size of each ring and the position of the fusion points.

To learn more about Nonane click here https://brainly.com/question/30056453

#SPJ11

what is the correct iupac name for (ch3)3cch2c(ch3)3? (1) nonane (2) 1,1,1,3,3,3-hexamethylpropane (3) 2,2,4,4-tetramethylpentane (4) 1,5-dimethylpentane (5) 1,1,5,5-tetramethylpentane

Answers

The correct IUPAC name for (CH3)3CCH2C(CH3)3 is (2) 1,1,1,3,3,3-hexamethylpropane.

IUPAC nomenclature is based on naming a molecule's longest chain of carbons connected by single bonds, whether in a continuous chain or in a ring.

The compound consists of a propane backbone with six methyl groups attached to the carbon atoms. According to IUPAC nomenclature rules, the longest continuous carbon chain is taken as the parent chain, which in this case is propane. The six methyl groups are then indicated by the prefix "hexamethyl," and the position of each methyl group is specified by the numbers 1 and 3.

Know more about IUPAC name here:

https://brainly.com/question/16631447

#SPJ11

the peptide bonds that link amino acids in a protein are ________. a. glycosidic bonds. b. ester bonds. c. ether bonds. d.sulfide bonds. e. amide bonds

Answers

The peptide bonds that link amino acids in a protein are amide bonds. A peptide bond is a chemical bond formed between two molecules as a result of the combination of a carboxyl group and an amino group.

This reaction results in a release of a molecule of water (H2O), known as a condensation reaction. Peptide bonds are covalent bonds between amino acids, which form the backbone of protein molecules. Amino acids are organic molecules that contain two functional groups: an amino group (-NH2) and a carboxyl group (-COOH).

During the formation of a peptide bond, the carboxyl group of one amino acid reacts with the amino group of another amino acid, releasing a molecule of water. This reaction creates a new bond between the two amino acids, known as a peptide bond. The resulting molecule is called a dipeptide. This process can be repeated to create longer chains of amino acids called polypeptides, which make up proteins. In conclusion, peptide bonds are the amide bonds that link amino acids in a protein.

To know more about peptide bonds

https://brainly.com/question/31589315

#SPJ11

A galvanic cell is powered by the following redox reaction:
3Cl2 (g) + 2MnO2 (s) + 8OH^(−) (aq) = 6Cl^(−) (aq) + 2MnO4^(−) (aq) + 4H2O (l)
Answer the following questions about this cell. If you need any electrochemical data, be sure you get it from the ALEKS Data tab.
Write a balanced equation for the half-reaction that takes place at the cathode.
Write a balanced equation for the half-reaction that takes place at the anode.
Calculate the cell voltage under standard conditions.

Answers

In the galvanic cell powered by the given redox reaction, the balanced equation for the half-reaction at the cathode is 2MnO4^-(aq) + 4H2O(l) + 3e^-(aq) -> 2MnO2(s) + 8OH^-(aq).

The balanced equation for the half-reaction at the anode is 6Cl^-(aq) -> 3Cl2(g) + 6e^-(aq).

The cell voltage under standard conditions can be calculated by finding the reduction potentials of the half-reactions and subtracting the anode potential from the cathode potential.

The half-reaction at the cathode can be determined by identifying the species that gains electrons and is reduced. In this case, MnO4^- is reduced to MnO2. The balanced equation for this half-reaction is 2MnO4^-(aq) + 4H2O(l) + 3e^-(aq) -> 2MnO2(s) + 8OH^-(aq).

The half-reaction at the anode involves the species that loses electrons and is oxidized. In this case, Cl^- is oxidized to Cl2. The balanced equation for this half-reaction is 6Cl^-(aq) -> 3Cl2(g) + 6e^-(aq).

To calculate the cell voltage under standard conditions, we need to find the reduction potentials of the half-reactions. The reduction potential of the cathode half-reaction is positive, while the reduction potential of the anode half-reaction is negative. By subtracting the anode potential from the cathode potential, we obtain the cell voltage.

Unfortunately, without specific electrochemical data from the ALEKS Data tab, I am unable to provide the exact calculation for the cell voltage. Please refer to the given electrochemical data to obtain the reduction potentials for MnO4^-/MnO2 and Cl^-/Cl2, and use them to calculate the cell voltage using the Nernst equation or standard reduction potentials.

learn more about galvanic cell Refer: https://brainly.com/question/29784751

#SPJ11

Identify the options below that decrease the rate of a reaction. (select all that apply)
Select all that apply:
a. Maintaining a constant concentration of all reactants throughout a reaction
b. Decreasing the temperature of an endothermic reaction
c. Increasing the concentration of a first order reactant
d. Decreasing the concentration of a second order reactant

Answers

Answer: Decreasing the temperature of an endothermic reaction, decreasing the concentration of a second order reactant

The options that decrease the rate of a reaction are Decreasing the temperature of an endothermic reaction, Decreasing the concentration of a second-order reactant.Option B,D.

In order to answer the question regarding which options decrease the rate of a reaction, let's analyze each option and its impact on the reaction rate.

a. Maintaining a constant concentration of all reactants throughout a reaction: This option does not affect the rate of the reaction. The rate of a chemical reaction is determined by the concentrations of the reactants. If the concentrations are kept constant, it means that the rate will remain the same.

However, it's important to note that maintaining a constant concentration can prevent the rate from changing, but it doesn't necessarily decrease the rate.

b. Decreasing the temperature of an endothermic reaction: Lowering the temperature of a reaction decreases the reaction rate. This is because temperature affects the kinetic energy of molecules.

By reducing the temperature, the molecules have less energy and move more slowly, resulting in fewer effective collisions between reactant molecules and a slower reaction rate.

c. Increasing the concentration of a first-order reactant: Increasing the concentration of a reactant typically increases the rate of the reaction. In a first-order reaction, the rate is directly proportional to the concentration of the reactant.

Therefore, increasing the concentration of a first-order reactant will lead to a faster reaction, not a decrease in the rate.

d. Decreasing the concentration of a second-order reactant: Decreasing the concentration of a second-order reactant decreases the rate of the reaction. In a second-order reaction, the rate is proportional to the square of the concentration of the reactant.

By reducing the concentration of a second-order reactant, the rate of the reaction decreases accordingly. So Option B,D is correct.

For more question on endothermic visit:

https://brainly.com/question/6506846

#SPJ8

Draw the Lewis structure for AsF5 and then answer the questions that follow. . b What is the electron-pair geometry for As in AsF5? c What is the the shape (molecular geometry) of AsF5?

Answers

The electron-pair geometry for arsenic in [tex]AsF_5[/tex] is trigonal bipyramidal, and the molecular geometry or shape is also trigonal bipyramidal. The Lewis structure for[tex]AsF_5[/tex] can be represented as follows:

          F

          |

   F – As – F

          |

          F

In the Lewis structure of [tex]AsF_5[/tex], there is one central arsenic (As) atom bonded to five fluorine (F) atoms. Arsenic has five valence electrons, and each fluorine atom contributes one valence electron, totaling 40 electrons. To complete the octet for each atom, there is a need for an additional three electrons. The electron-pair geometry around the arsenic atom in [tex]AsF_5[/tex] is trigonal bipyramidal. It has five electron groups around it, consisting of the five fluorine atoms. The electron-pair geometry considers both bonding and non-bonding electron pairs.

The molecular geometry or shape of [tex]AsF_5[/tex] is also trigonal bipyramidal. In [tex]AsF_5[/tex] there are no lone pairs on the central arsenic atom, so all five fluorine atoms are bonded to arsenic. The five fluorine atoms are arranged in a trigonal bipyramidal shape, with three fluorine atoms in the equatorial plane and two fluorine atoms above and below the plane. In summary, the electron-pair geometry for arsenic in [tex]AsF_5[/tex] is trigonal bipyramidal, and the molecular geometry or shape is also trigonal bipyramidal.

Learn more about Lewis structure here:

https://brainly.com/question/4144781

#SPJ11

according to the following reaction, how many grams of oxygen gas are required for the complete reaction of 32.4 grams of carbon (graphite)? carbon (graphite) (s) oxygen (g) carbon dioxide (g)

Answers

To determine the grams of oxygen gas required for the complete reaction of 32.4 grams of carbon (graphite), we need to use the balanced equation and stoichiometry. The molar ratio between carbon and oxygen in the equation allows us to calculate the amount of oxygen gas needed.

The balanced equation for the reaction between carbon (graphite) and oxygen gas to form carbon dioxide is:

C (graphite) + O2 (g) -> CO2 (g)

From the balanced equation, we can see that the molar ratio between carbon and oxygen is 1:1. This means that for every 1 mole of carbon, we need 1 mole of oxygen gas.

To calculate the grams of oxygen gas required, we need to convert the given mass of carbon (32.4 grams) to moles using its molar mass. The molar mass of carbon is 12.01 g/mol.

Moles of carbon = mass of carbon / molar mass of carbon

Moles of carbon = 32.4 g / 12.01 g/mol ≈ 2.70 mol

Since the molar ratio between carbon and oxygen is 1:1, we need the same number of moles of oxygen gas.

Moles of oxygen gas = 2.70 mol

To convert the moles of oxygen gas to grams, we can use the molar mass of oxygen, which is approximately 32.00 g/mol.

Grams of oxygen gas = moles of oxygen gas x molar mass of oxygen

Grams of oxygen gas = 2.70 mol x 32.00 g/mol ≈ 86.4 g

Therefore, approximately 86.4 grams of oxygen gas are required for the complete reaction of 32.4 grams of carbon (graphite).

Learn more about equation here: https://brainly.com/question/29174899

#SPJ11

if a hydrogen atom has its electron in the =5 state, how much energy, in electronvolts, is needed to ionize it? energy required to ionize the atom: ev

Answers

The energy required to ionize a hydrogen atom is 0.544 electronvolts (eV).

What is ionization energy?

Ionization energy, also known as ionization potential, is the amount of energy required to remove an electron from an atom or a positively charged ion. It is the minimum energy necessary to completely remove an electron from its orbital and create a positively charged ion.

To determine the energy required to ionize a hydrogen atom when its electron is in the n=5 state, we need to find the energy difference between the n=5 energy level and the ionization energy level, where the electron is completely removed from the atom.

The ionization energy of a hydrogen atom can be calculated using the formula:

Ionization Energy = [tex]\frac{-13.6 eV }{n^2}[/tex]

Where n is the principal quantum number of the energy level.

For the n=5 energy level, the ionization energy would be:

Ionization Energy = [tex]\frac{-13.6 eV}{5^2}[/tex]

Ionization Energy =[tex]\frac{ -13.6 eV}{25}[/tex]

Ionization Energy = -0.544 eV

Since the energy values are typically expressed as positive values, we can take the absolute value of the result:

Ionization Energy = |-0.544 eV|

Ionization Energy = 0.544 eV

Therefore, the energy required to ionize a hydrogen atom when its electron is in the n=5 state is 0.544 electronvolts (eV).

To learn more about ionization energy from the given link

brainly.com/question/20658080

#SPJ4

Suppose 0.438 L of 0.152 M NaOH is diluted with water to a final volume of 3.00 L. What is the pH of the dilute solution? a. 12.346 b. 12.705 c. 13.182
d. 1.654 e. 1.295

Answers

The pH of the dilute solution obtained by diluting 0.438 L of 0.152 M NaOH with water to a final volume of 3.00 L is approximately 12.705 (option b).

To calculate the pH of the dilute solution, we need to consider the concentration of hydroxide ions (OH-) in the solution. Since NaOH is a strong base, it dissociates completely in water to form Na+ and OH- ions.

First, we calculate the moles of NaOH initially present in 0.438 L of 0.152 M solution:

Moles of NaOH = concentration (M) * volume (L)

= 0.152 M * 0.438 L

= 0.066576 moles

Next, we determine the moles of NaOH in the final solution after dilution:

Moles of NaOH in final solution = moles of NaOH initially

Since the volume of the final solution is 3.00 L, we can calculate the final concentration of NaOH:

Concentration (M) =\frac{ moles of NaOH }{volume (L)}

= \frac{0.066576 moles }{ 3.00 L}

= 0.022192 M

Now, we have the concentration of OH- ions, which is equal to the concentration of NaOH in the dilute solution.

To calculate the pOH of the solution, we take the negative logarithm (base 10) of the OH- concentration:

pOH = -log10(0.022192)

≈ 1.153

Finally, to find the pH of the solution, we subtract the pOH from 14 (pH + pOH = 14):

pH ≈ 14 - 1.153

≈ 12.847

The pH of the dilute solution is approximately 12.705 (option b).

learn more about dilute solution Refer: https://brainly.com/question/31388091

#SPJ11

The balanced equation for the reaction between phosphoric acid and sodium hydroxide is: H3PO4 (aq) + 3 NaOH (aq) → Na3PO4 (aq) + 3 H2O(l) In a titration, what volume of 1.77 M phosphoric acid is required to neutralize 34.0 mL of 0.550 M sodium hydroxide?

Answers

To determine the volume of 1.77 M phosphoric acid needed to neutralize 34.0 mL of 0.550 M sodium hydroxide in a titration, we can use the balanced equation and the concept of stoichiometry.

The balanced equation for the reaction between phosphoric acid [tex](H_3PO_4[/tex]) and sodium hydroxide (NaOH) is:

[tex]\[ H_3PO_4 (aq) + 3 NaOH (aq) \rightarrow Na_3PO_4 (aq) + 3 H_2O(l) \][/tex]

From the equation, we can see that one mole of phosphoric acid reacts with three moles of sodium hydroxide.

To determine the volume of phosphoric acid required, we need to use the concept of stoichiometry.

First, we convert the given volume of sodium hydroxide (34.0 mL) to moles:

[tex]\[ \text{moles of NaOH} = \text{concentration} \times \text{volume} = 0.550 \, \text{M} \times 0.0340 \, \text{L} = 0.0187 \, \text{mol} \][/tex]

Since the stoichiometric ratio between phosphoric acid and sodium hydroxide is 1:3, we can determine the moles of phosphoric acid needed:

[tex]\[ \text{moles of H}_3\text{PO}_4 = 3 \times \text{moles of NaOH} = 3 \times 0.0187 \, \text{mol} = 0.0561 \, \text{mol} \][/tex]

Now, we can calculate the volume of 1.77 M phosphoric acid needed:

[tex]\[ \text{volume of H}_3\text{PO}_4 = \frac{\text{moles}}{\text{concentration}} = \frac{0.0561 \, \text{mol}}{1.77 \, \text{M}} \approx 0.032 \, \text{L} \][/tex]

Converting the volume to milliliters:

[tex]\[ \text{volume of H}_3\text{PO}_4 = 0.032 \, \text{L} \times 1000 = 32.0 \, \text{mL} \][/tex]

Therefore, approximately 32.0 mL of 1.77 M phosphoric acid is required to neutralize 34.0 mL of 0.550 M sodium hydroxide in the titration.

To learn more about stoichiometry refer:

https://brainly.com/question/14935523

#SPJ11

what is the total number of moles of o2 g that must react completely with 8 moles of al in order to form al2o3

Answers

6 moles of O2 gas are required to react completely with 8 moles of Al to form Al2O3.

The balanced chemical equation for the reaction between aluminum and oxygen to form aluminum oxide is 4Al + 3O2 → 2Al2O3. From this equation, we can see that 3 moles of O2 are required for every 4 moles of Al that react. Therefore, to completely react with 8 moles of Al, we would need (3/4) x 8 = 6 moles of O2. So, the total number of moles of O2 that must react completely with 8 moles of Al in order to form Al2O3 is 6 moles.
To determine the total number of moles of O2 gas needed to react completely with 8 moles of Al to form Al2O3, we must first consider the balanced chemical equation:
4Al + 3O2 → 2Al2O3
From the equation, we can see that 4 moles of Al react with 3 moles of O2. To find the amount of O2 needed for 8 moles of Al, we can set up a proportion:
(3 moles O2 / 4 moles Al) = (x moles O2 / 8 moles Al)
By solving for x, we find that:
x = (3 moles O2 / 4 moles Al) × 8 moles Al = 6 moles O2
Thus, 6 moles of O2 gas are required to react completely with 8 moles of Al to form Al2O3.

To know more about chemical equation visit:

https://brainly.com/question/28792948

#SPJ11

In a 0.100 M solution of Carbonic Acid (H2CO3), what would be the concentration of the CO32 equilibrium?
Ka1 = 4.3 x 10^-7
Ka2 = 5.6 x 10^-11
The concentration of carbonate at equilibrium would be____

Answers

The concentration of the CO32- ion at equilibrium in a 0.100 M solution of carbonic acid (H2CO3) can be calculated using the equilibrium constants (Ka1 and Ka2) and the stoichiometry of the balanced equation. The concentration of CO32- at equilibrium would be approximately 1.55 * 10^-8 M.

The dissociation of carbonic acid (H2CO3) can be represented by the following equilibrium reactions:

H2CO3 ⇌ H+ + HCO3- (Ka1)

HCO3- ⇌ H+ + CO32- (Ka2)

Given that Ka1 = 4.3 * 10^{-7} and Ka2 = 5.6 *10^{-11}, we can use these equilibrium constants to determine the concentrations of HCO3- and CO32- at equilibrium.

Let x be the concentration of H+ ions at equilibrium. Since the concentration of carbonic acid is 0.100 M, the initial concentration of H+ ions is also 0.100 M.

Using the equilibrium expression for Ka1, we have:

Ka1 = \frac{[H+][HCO3-] }{ [H2CO3]}

4.3 * 10^{-7 }= \frac{x * (0.100 - x) }{0.100}

Simplifying the equation and solving for x, we find x ≈ 1.54* 10^{-3} M.

Now, using the equilibrium expression for Ka2, we have:

Ka2 =\frac{ [H+][CO32-] }{[HCO3-]}

5.6 *10^{-11} =\frac{ (1.54 * 10^{-3}) * (CO32- concentration) }{(1.54 * 10^{-3} - CO32- concentration)}

Solving for the CO32- concentration, we find it to be approximately 1.55 * 10^{-8} M.

Therefore, the concentration of the CO32- ion at equilibrium in a 0.100 M solution of carbonic acid would be approximately 1.55 * 10^{-8} M.

learn more about equilibrium Refer: https://brainly.com/question/30694482

#SPJ11

the following molecule is nonpolar. group of answer choices a. CO b. CO2 c. COCl2 d. H2S e. H2O

Answers

The molecule that is nonpolar among the options provided is (a) CO.

In order to determine the polarity of a molecule, we need to consider its molecular geometry and the polarity of its individual bonds.

(a) CO (carbon monoxide) has a linear molecular geometry, and the carbon-oxygen bond is polar due to the difference in electronegativity between carbon and oxygen. However, since CO is a linear molecule with symmetrical distribution of electron density, the polarities of the individual bonds cancel each other out, resulting in a nonpolar molecule overall.

(b) CO2 (carbon dioxide) has a linear molecular geometry as well, but it consists of two polar carbon-oxygen bonds. However, the molecule is linear and symmetrical, so the polarities of the two bonds cancel each other out, making CO2 a nonpolar molecule.

Know more about molecule here:

https://brainly.com/question/30465503

#SPJ11

A system performs work on the surroundings but no thermal energy is transferred. Which of the following is true from the system’s perspective? (q = heat, w = work, △E = internal energy change)
a. q = 0, w > 0, △E > 0
b. q = 0, w > 0, △E < 0
c. q = 0, w < 0, △E < 0
d. q < 0, w > 0, △E = 0
e. q = -w, △E = 0

Answers

The system's perspective, if no thermal energy is transferred (q = 0) and work is performed on the surroundings (w > 0),q = 0, w > 0, △E > 0 is true from the system's perspective in this scenario.

In this scenario, since there is no thermal energy transfer (q = 0), the change in internal energy (△E) of the system is solely determined by the work done on the surroundings (w > 0). Since work is performed on the surroundings, the system gains energy, leading to an increase in its internal energy (△E > 0).

This situation can occur, for example, when a system undergoes adiabatic compression, where the system is compressed rapidly and no heat exchange occurs with the surroundings. In this case, the work done on the system increases its internal energy without any thermal energy transfer.

Learn more about thermal energy here

https://brainly.com/question/3022807

#SPJ11

which compound has the smaller bond dissociation energy for its carbon-chlorine bond, ch3cl or (ch3)3ccl?

Answers

The compound with the smaller bond dissociation energy for its carbon-chlorine bond is CH3Cl (methyl chloride) compared to (CH3)3CCl (2,2,2-trichloropropane).

Bond dissociation energy refers to the amount of energy required to break a particular bond, and it is influenced by several factors, including bond strength and molecular structure. In this case, the molecular structures of CH3Cl and (CH3)3CCl play a significant role in determining their bond dissociation energies. (CH3)3CCl has a more bulky and sterically hindered structure compared to CH3Cl.

The presence of three methyl (CH3) groups attached to the central carbon atom in (CH3)3CCl results in increased steric hindrance. This hindrance restricts the approach of a reacting species to the carbon-chlorine bond, making it harder to break. Consequently, (CH3)3CCl has a higher bond dissociation energy for its carbon-chlorine bond. On the other hand, CH3Cl has a simpler and less hindered structure with only one methyl (CH3) group attached to the central carbon atom.

Learn more about methyl chloride here

https://brainly.com/question/6341388

#SPJ11

Consider the following reaction:
2NO2(g) → 2NO(g) + O2(g) rate = k [NO2]^2 where k = 0.25 M-1 s-1
A rigid 1.00 L reaction vessel initially contains only 0.50 moles NO2. How long would it take to form 0.20 moles of O2? Report answer in seconds to 2 significant figures

Answers

To determine the time it takes to form 0.20 moles of O2, we need to first find the initial concentration of NO2 and the final concentration of NO2 after the reaction.
Initial concentration of NO2 = (0.50 moles) / (1.00 L) = 0.50 M

Reporting the answer to 2 significant figures, the time it takes to form 0.20 moles of O2 is 1.6 s.

To solve this problem, we need to use the rate law equation and the given values to calculate the time required to form 0.20 moles of O2. The rate law equation for this reaction is rate = k [NO2]^2.
First, we need to calculate the initial concentration of NO2 in the reaction vessel. Since the vessel contains 1.00 L of gas and 0.50 moles of NO2, the initial concentration of NO2 is 0.50 M.
Next, we can use the rate law equation to calculate the rate of the reaction at the initial concentration of NO2:
rate = k [NO2]^2
rate = 0.25 M-1 s-1 x (0.50 M)^2
rate = 0.0625 M/s
To form 0.20 moles of O2, we need to calculate the time required at this rate:
0.20 moles O2 / 2 moles NO2 = 0.10 moles NO2 used
0.10 moles NO2 / (0.0625 M/s) = 1.6 s
Therefore, it would take 1.6 seconds (reported to 2 significant figures) to form 0.20 moles of O2 in the reaction vessel.
To know more about significant figures visit:

https://brainly.com/question/23396760

#SPJ11

Identify the missing species in the following nuclear transmutation.
16/8 O (n, ?) 1/1 H
a. 17/8 O
b. 15/7 N
c. 16/7 N
d. 15/9 F
e. 15/6 C

Answers

The missing species in the nuclear transmutation 16/8 O (n, ?) 1/1 H is 17/8 O.

In a nuclear transmutation, a nucleus undergoes a change due to a nuclear reaction. In the given transmutation, a neutron (n) interacts with a 16/8 O (oxygen) nucleus to produce an unknown species, represented by '?', and a 1/1 H (hydrogen) nucleus. To determine the missing species, we need to consider the conservation of atomic and mass numbers.

The atomic number (Z) of an oxygen nucleus is 8, and the sum of the atomic numbers of the products must be equal to the atomic number of the reactant. Since hydrogen has an atomic number of 1, the atomic number of the unknown species must be 8 + 1 = 9.

Similarly, the mass number (A) of an oxygen nucleus is 16, and the sum of the mass numbers of the products must be equal to the mass number of the reactant. Hydrogen has a mass number of 1. The mass number of the unknown species is therefore 16 + 1 = 17.

Based on these considerations, we can conclude that the missing species in the given nuclear transmutation is 17/8 O.

To learn more about transmutation refer:

https://brainly.com/question/31759759

#SPJ11

433.mg of an unknown protein are dissolved in enough solvent to make 5.00 ml. of solution. The osmotic pressure of this solution is measured to be 0.416 atm at 25.0 °C Calculate the molar mass of the protein, Round your answer to 3 significant digits. ____mel

Answers

The molar mass of the unknown protein is approximately 43.3 g/mol.

The molar mass of the unknown protein is estimated to be approximately 43.3 g/mol based on the osmotic pressure measurement of the protein solution.

To calculate the molar mass of the protein, we need to use the formula for osmotic pressure:

π = (n/V)RT

Where:

π = osmotic pressure (in atm)

n = number of moles of solute

V = volume of solution (in liters)

R = ideal gas constant (0.0821 L·atm/(mol·K))

T = temperature in Kelvin

We are given:

π = 0.416 atm

V = 5.00 mL = 0.005 L

T = 25.0 °C = 298 K

Rearranging the equation to solve for n (moles of solute):

n = (πV)/(RT)

Substituting the given values:

n = (0.416 atm * 0.005 L) / (0.0821 L·atm/(mol·K) * 298 K)

n ≈ 0.0108 mol

Now, we can calculate the molar mass (M) using the formula:

M = (mass of solute) / (moles of solute)

Given that the mass of solute is 433 mg (0.433 g), we have:

M = 0.433 g / 0.0108 mol

M ≈ 40.046 g/mol

Rounding to three significant digits, the molar mass of the protein is approximately 43.3 g/mol.

The molar mass of the unknown protein is estimated to be approximately 43.3 g/mol based on the osmotic pressure measurement of the protein solution.

To know more about molar mass ,visit:

https://brainly.com/question/837939

#SPJ11

which of the following formulas in incorrect for a cobalt(iii) compound? group of answer choices cocl3 copo4 coco3 co2o3

Answers

The incorrect formula for a cobalt(III) compound among the options provided is “[tex]CO_2O_3[/tex].” Cobalt(III) compounds are typically denoted by the oxidation state of cobalt, followed by the appropriate subscript numbers for each element present in the compound.

The correct formula for cobalt(III) oxide would be [tex]CO_2O_3[/tex], indicating two cobalt atoms and three oxygen atoms. Among the given formulas, “[tex]CO_2O_3[/tex]” is incorrect for a cobalt(III) compound. In chemical formulas, the element symbol is capitalized, and the subscript numbers represent the number of atoms present. For cobalt(III), the correct symbol is “Co” to represent cobalt in its +3 oxidation state. The formula “[tex]CO_2O_3[/tex]” would indicate two cobalt atoms and three oxygen atoms, which is the correct representation for cobalt(III) oxide. The incorrect formula “[tex]CO_2O_3[/tex]” violates the proper capitalization of the element symbol for cobalt and the use of subscript numbers to indicate the number of atoms. Hence, “[tex]CO_2O_3[/tex]” is not a valid formula for a cobalt(III) compound.

Learn more about oxidation state here:

https://brainly.com/question/31688257

#SPJ11

Bromomethane is converted to methanol in an alkaline solution. The reaction is first order in each reactant.
CH3Br(aq)+OH−(aq)→CH3OH(aq)+Br−(aq)
Rate=k[CH3Br][OH−]
How does the reaction rate change if the OH− concentration is decreased by a factor of 7?

Answers

If the concentration of OH- is decreased by a factor of 7, the rate of the reaction will decrease by the same factor. The overall reaction rate will decrease by a factor of 1/7th.

According to the given reaction, the rate is dependent on the concentration of both [tex]CH_3Br[/tex] and OH- as seen in the rate equation. This means that the rate will be 1/7th of its initial rate. However, the concentration of [tex]CH_3Br[/tex] has not changed and therefore, the reaction rate will still be first order with respect to [tex]CH_3Br[/tex]. This decrease in the reaction rate can be explained by the fact that the concentration of OH- is a limiting factor in this reaction. If the concentration of OH- is decreased, there are fewer particles available to react with [tex]CH_3Br[/tex] leading to a slower rate of reaction.

To learn more about concentration click here https://brainly.com/question/3045247

#SPJ11

what would immediately be used if your clothing caught fire or if a large chemical spill had occured on your clothing? group of answer choices laboratory sinks eye-wash fountain safety shower fire extinguisher

Answers

If yοur clοthing caught fire οr if a large chemical spill οccurred οn yοur clοthing, the apprοpriate immediate actiοn wοuld depend οn the specific situatiοn. Hοwever, the mοst suitable οptiοn frοm the given chοices wοuld be: Safety shοwer

What is a Chemical spills?

Chemical spills can result in chemical expοsures and cοntaminatiοns. Whether a chemical spill can be safely cleaned up by labοratοry staff depends οn multiple factοrs including the hazards οf the chemicals spilled, the size οf the spill, the presence οf incοmpatible materials, and whether yοu have adequate training and supplies tο safely clean up the spill.

A safety shοwer is designed tο quickly rinse οff hazardοus substances frοm the bοdy in the event οf a chemical spill οr splash. It is equipped with a large οverhead shοwerhead οr multiple nοzzles that deliver a significant flοw οf water tο wash away the chemical and minimize the pοtential fοr injury οr further damage.

While a fire extinguisher may be used if yοur clοthing catches fire, it is impοrtant tο remember that "stοp, drοp, and rοll" is the recοmmended initial respοnse tο extinguish the flames οn yοur bοdy. The fire extinguisher shοuld be used if the fire cannοt be quickly cοntrοlled by οther means.

Labοratοry sinks, eye-wash fοuntains, and safety shοwers are primarily intended fοr emergency respοnse tο chemical spills οr splashes and prοvide immediate access tο water tο flush οff the chemicals and minimize pοtential harm.

Learn more about Chemical spills

https://brainly.com/question/30192023

#SPJ4

Learning Task No.5
identify the word or words being described by each statement.Chose your answer from box below.
1.It is the process of changing liquid to gas.
2.It is the process when water from plants evaporates.
3.It is the liquid part of the earth.
4.It is the cotinous movement of water on the earth's surface
5.The process of changing gas to liquid.
Please help ma to answer it
Thank you and goodbless ​

Answers

The appropriate term for each definition is given as follows:

It is the process of changing liquid to gas - evaporationIt is the process when water from plants evaporates - transpirationIt is the liquid part of the earth - hydrosphere It is the continous movement of water on the earth's surface - water cycleThe process of changing gas to liquid - condensation

What is evaporation?

Evaporation is the process of a liquid converting to the gaseous state while condensation is the conversion of a gas to a liquid.

Hydrosphere is all the liquid waters of the Earth, as distinguished from the land and the gases of the atmosphere.

Transpiration is the loss of water by evaporation in terrestrial plants, especially through the stomata of their leaves.

Water cycle is the continuous movement of water within the Earth and atmosphere.

Learn more about water cycle at: https://brainly.com/question/1151425

#SPJ1

Other Questions
casual human inquiry is a more rigorous way of investigation than probability and causality. group of answer choices true false which of the following includes all the others? unselected species unselected community unselected population unselected biosphere unselected ecosystem Use the four-step process to find f'(x) and then find f (1), f'(2), and f'(3). 8x f(x) = 9 + x - 6 f'(x) =f'(1) = Which of the following is true regarding sovereign risk? with whom are psychoanalytic theories of crime causation associated Sketch with direction of the following functions r= f (O) in polar coordinate. a) r = 5 sin (30) b) r2 =-9 sin(20) c) r=4-5 cos e Question 4 < Use linear approximation, i.e. the tangent line, to approximate 64.3. Let f(x)=x. A. Find the equation of the tangent line to f(x) at a = 64. L(x) = B. Using the linear approximatio Reaction: 2K2O+4MnO2+3O2(g) 4KMnO4 (aq) If you start with 291(g) of MnO2, how many moles of NaOH will you start with? (The molar mass of MnO2 is 87 for every 1 mole) if george had grown up in a house that was later found to have extensive lead paint on the inside walls, what disorder is he more likely to suffer as an adult? 20 POINTSSimplify the following expression: An isolation transformer has the same input and output voltages. a. True b. False Two numbers that multiple to be 40 that add to be -14 calculate the magnitude of the electric field 2.80 m from a point charge of 6.40 mc (such as found on the terminal of a van de graaff). HELP ASAPActive readers engage their thoughts as they focus on their reading. Which of the following readers show evidence of using active reading strategies? Choose as many as you find appropriate.You're reading an article on video games for a report. The cover on the front of the book causes you to think of several questions. You start reading to find out some of the answers.You pick up a book and read while talking on the phone, painting your nails, or watching television.You open a book and read for thirty minutes because that is what you are supposed to do during silent reading time.You read your homework during dinnertime and having a conversation. After you're done reading, you don't remember anything except what you discussed at the table.You preview the headers and graphics in a book on using the Internet before beginning to do your reading. if f and g are differentiable functions so that f(0)=2,f'(0)=-5,g(0)=-3,g'(0)=7. Evaluate what (f/g)'(0) would be. Because girls who smoke build up less bone during a critical growth period in their lives, they face a higher risk for:a) Heart diseaseb) Osteoporosisc) Lung cancerd) Type 2 diabetes prenatal testosterone secretions exert one of their earliest influences on Which of the following Python methods is used to perform a paired t-test for the difference in two population means? a)ttest_ind from scipy module b)paired_ttest from scipy module c)proportions_ztest from statsmodels module d)ttest_rel from scipy module Suppose that 0 f(x) = v2x, g(x) -- and h 2 Find (fogoh)(0) (fogoh)(x) = I Sketch the graph and show all extrema, inflection points, and asymptotes where applicable. 1) f(x) = x1/3(x2.252) 1) 400+ 2007 -20 -10 10 20 -200+ -400+ A) Rel max: (-6, 216 Vo) , Rel min: (6, -216 )