what if you add 25.0 ml of 0.100m naoh to 50.0ml of 0.100m ch3cooh

Answers

Answer 1

The resulting solution will have a pH of about 4.75 when 25.0 mL of 0.100 M NaOH is added to 50.0 mL of 0.100 M CH3COOH. often known as sodium hydroxide, is a strong base. It's a colorless, odorless substance that's highly hygroscopic.

often known as acetic acid, is an organic acid. It's a weak acid, unlike hydrochloric acid or sulfuric acid. It's a colorless liquid that's highly flammable. It's found in vinegar.What happens when NaOH and CH3COOH are mixed?When NaOH and CH3COOH are combined, they react to create water (H2O), salt, and a weak acid known as CH3COO- (acetic acid ion).This reaction's balanced equation is shown below:CH3COOH + NaOH → CH3COO- Na+ + H2OIn this reaction, the pH of the resulting solution is determined by the concentration of the CH3COOH and CH3COO- ions present. Since CH3COOH is a weak acid, it does not completely dissociate in solution, and some of it remains in its undissociated form, while the rest is dissociated into H+ and CH3COO- ions.The pH of the resulting solution can be calculated using the Henderson-Hasselbalch equation:pH = pKa + log ([A-] / [HA]),wherepKa is the acid dissociation constant for acetic acid, which is 4.76 at 25°C[A-] is the concentration of CH3COO- ions[HA] is the concentration of undissociated CH3COOH ionsWhen 25.0 mL of 0.100 M NaOH is added to 50.0 mL of 0.100 M CH3COOH, the amount of NaOH is not sufficient to completely neutralize all of the CH3COOH in the solution. As a result, there will still be some undissociated CH3COOH in the solution, along with the CH3COO- ions formed as a result of the reaction.The amount of CH3COO- ions generated is the same as the amount of NaOH added, but the amount of undissociated CH3COOH present is determined by the pH of the solution. This leads to a buffer solution being formed, which has a pH near the pKa of acetic acid, which is 4.76.Therefore, when 25.0 mL of 0.100 M NaOH is added to 50.0 mL of 0.100 M CH3COOH, the resulting solution will have a pH of about 4.75.

To know more about solution Visit:

https://brainly.com/question/1616939

#SPJ11


Related Questions

Meisenheimer Complex is formed addition-………….mechanism of ………... reaction

I know that the Meisenheimer Complex is formed addition- elimination mechanism but i do not know of what kind of reaction

Answers

The Meisenheimer Complex is a type of intermediate formed during the second stage of nucleophilic aromatic substitution. It is named after German chemist Max Meisenheimer and is highly reactive and can be quickly eliminated if conditions are right. The final product of the reaction is the substitution product.

The Meisenheimer Complex is a type of intermediate that results from a type of organic reaction known as nucleophilic aromatic substitution. It is named after its discoverer, German chemist Max Meisenheimer. The Meisenheimer Complex is formed during the second stage of nucleophilic aromatic substitution, when the attack of a nucleophile leads to the formation of a sigma complex. The sigma complex is highly reactive and if conditions are right, it will undergo a rapid elimination process. The final product of the reaction is the substitution product.

To know more about Meisenheimer Complex Visit:

https://brainly.com/question/31503697

#SPJ11

n2(g) 3h2(g)2nh3(g) using the standard thermodynamic data in the tables linked above, calculate the equilibrium constant for this reaction at 298.15k.

Answers

The reaction given is  N2(g) + 3H2(g) ⇌ 2NH3(g). To calculate the equilibrium constant for this reaction at 298.15K using the standard thermodynamic data in the tables linked above, we need to use the following formula:

ΔG° = -RT ln Kwhere ΔG° is the standard Gibbs free energy change, R is the gas constant (8.314 J/K mol), T is the temperature in Kelvin, ln is the natural logarithm and K is the equilibrium constant.Using the standard thermodynamic data in the tables linked above, we can determine the standard Gibbs free energy change for the reaction as follows:ΔG° = ΣnΔG°f(products) - ΣnΔG°f(reactants)where ΔG°f is the standard Gibbs free energy of formation of the respective compounds, and n is the stoichiometric coefficient of each compound. Using the values from the tables, we get:ΔG° = 2(0) + 0 - [1(-16.45) + 3(0)]ΔG° = 16.45 kJ/molSubstituting this value into the above formula, we get:16.45 kJ/mol = -(8.314 J/K mol)(298.15 K) ln Kln K = -16.45 x 10^3 J/mol / (8.314 J/K mol x 298.15 K)ln K = -20.09K = e^(-20.09)K = 6.47 x 10^(-9)Therefore, the equilibrium constant for the given reaction at 298.15K is 6.47 x 10^(-9).

To know more about Gibbs free energy , visit ;

https://brainly.com/question/9179942

#SPJ11

pick the single-step reaction that, according to collision theory, has the smallest orientation factor.

Answers

The single-step reaction with the smallest orientation factor, according to collision theory, is H + H → H₂.

According to collision theory, the orientation factor refers to the likelihood that colliding molecules will have the correct orientation to result in a successful reaction. In a single-step reaction, the orientation factor plays a crucial role in determining the reaction's success.

Out of the given reactions, H + H → H₂ has the smallest orientation factor. This reaction involves the combination of two hydrogen atoms to form a hydrogen molecule (H₂). Since both reactants are identical atoms, there are fewer restrictions on their orientation during the collision, making it more likely for a successful reaction to occur.

The other reactions involve more complex molecules with specific geometric requirements for a successful collision, resulting in larger orientation factors. H₂ + H₂C=CH₂ → H₂C=CH₃ involves the addition of a hydrogen molecule to an ethylene molecule, while I + HI → I₂ + H involves the reaction between iodine and hydrogen iodide. Both of these reactions have more restrictive orientation requirements compared to the H + H → H₂ reaction.

Therefore, the single-step reaction with the smallest orientation factor, according to collision theory, is H + H → H₂.

Learn more about collision theory here:

https://brainly.com/question/32294127

#SPJ11

The full question is:

Pick the single-step reaction that, according to collision theory, has the smallest orientation factor.

   H+H → H₂    H₂+H₂C=CH₂→H₂C=CH₃    I+HI→I₂+H    All of these reactions have the same orientation factor.

use the bond energies in table 7.2 to calculate the standard enthalpy change (∆h∘) of the following reaction. your answer should be kj. a. cl2(g)⟶2cl(g)

Answers

The total bond energy of products = 2 × 193 = 386 kJ/mol∆H = (242 kJ/mol) - (386 kJ/mol)∆H = -144 kJ/mol, the standard enthalpy change (∆H∘) for the given reaction is -144 kJ/mol.

The bond energies of Cl-Cl, Cl-Cl, and Cl-Cl are 242, 193, and 242 kJ/mol respectively. Use these values to calculate the standard enthalpy change (∆H∘) of the following reaction; Cl2(g) ⟶ 2Cl(g)The bond dissociation energy is the energy needed to break one mole of bonds, that is, how much energy must be supplied to one mole of a bond in gaseous state to break it into its constituent atoms also in gaseous state. The enthalpy change for the reaction is∆H = ∑ bond energies of the reactants - ∑ bond energies of the products or the given reaction: Cl2(g) ⟶ 2Cl(g)Reactants: 1 Cl-Cl bond with a bond energy of 242 kJ/molProducts: 2 Cl atoms with a bond energy of 193 kJ/mol each. So, the total bond energy of products = 2 × 193 = 386 kJ/mol∆H = (242 kJ/mol) - (386 kJ/mol)∆H = -144 kJ/mol, the standard enthalpy change (∆H∘) for the given reaction is -144 kJ/mol.

To Know more about bond energy visit:

brainly.com/question/20536349

#SPJ11

the permanent electric dipole moment of the water molecule (h2o) is 6.2×10−30c⋅m .

Answers

The permanent electric dipole moment of the water molecule (H2O) is 6.2×10^−30 C⋅m.

The electric dipole moment is the distance between two equal but opposite charges.

The electric dipole moment for H2O is 6.2 x 10^-30 C⋅m. In general, the electric dipole moment is defined as the product of charge and distance between the charges.The water molecule is polar because of its bent structure and electronegativity.

A permanent dipole is created as a result of the electronegativity difference between hydrogen and oxygen.

Because of the differences in the electronegativity of the atoms, electrons are drawn toward the oxygen atom, generating a negative charge, whereas the hydrogen atoms develop a positive charge as a result of the electron migration, resulting in a net dipole moment of the H2O molecule.

Summary:The water molecule's permanent electric dipole moment is 6.2×10^-30 C⋅m. The dipole moment is created as a result of the polar nature of the molecule, which is caused by differences in electronegativity between the atoms.

Learn more about electric dipole moment click here;

https://brainly.com/question/11626115

#SPJ11

choose the correct set up for the equilibrium constant expression for the formation of silver diammine chloride from solid silver chloride and aqueous ammonia solutio

Answers

The correct setup for the equilibrium constant expression for this reaction is:
Kc = [Ag(NH3)2]Cl / [AgCl] x [NH3]2

The equilibrium constant, represented by Kc, is the ratio of the concentrations of products to the concentrations of reactants, all raised to the power of their coefficients in the balanced chemical equation. This equilibrium constant expression can be used to predict the direction of a chemical reaction in a solution.

The formation of silver diamine chloride from solid silver chloride and aqueous ammonia solution can be represented by the following balanced chemical equation:

AgCl(s) + 2NH3(aq) ⇌ [Ag(NH3)2]Cl(aq)

The correct setup for the equilibrium constant expression for this reaction is:

Kc = [Ag(NH3)2]Cl / [AgCl] x [NH3]2

where [Ag(NH3)2]Cl represents the concentration of silver diamine chloride in solution, [AgCl] represents the concentration of solid silver chloride, and [NH3] represents the concentration of aqueous ammonia. The coefficients in the balanced equation are used as exponents in the expression.

The value of the equilibrium constant provides information about the extent of the reaction at equilibrium. A value of Kc greater than 1 indicates that the products are favored at equilibrium, while a value less than 1 indicates that the reactants are favored. A value of Kc equal to 1 indicates that the reactants and products are present in roughly equal amounts at equilibrium.

To Know more about equilibrium constant visit:

brainly.com/question/29809185

#SPJ11

draw the structure of an alkyl halide that could be used in an e2 reaction

Answers

An alkyl halide that can undergo an E2 (elimination) reaction typically has a primary or secondary carbon bonded to a halogen atom. Here's an example of structure attached.

In this structure, R represents an alkyl group (such as methyl, ethyl, propyl, etc.), X represents a halogen atom (such as Cl, Br, or I), and the hydrogen atoms attached to the carbon atom labeled as C can be different alkyl groups or hydrogens.

In an E2 reaction, the alkyl halide acts as the substrate and undergoes a bimolecular elimination. During the reaction, a base abstracts a proton from a beta-carbon (carbon adjacent to the carbon with the halogen atom), and simultaneously, the leaving group (halogen) is expelled, resulting in the formation of a double bond.

The reaction proceeds more readily with primary or secondary alkyl halides due to the availability of beta-hydrogens, which are required for the elimination process. Tertiary alkyl halides are generally unreactive in E2 reactions because the steric hindrance around the carbon atom hinders the approach of the base.

To learn more about E2 reaction here

https://brainly.com/question/31327352

#SPJ4

draw the organic product(s) of the following reaction. ch3 ch3chch2-oh

Answers

The organic product of the given reaction is 3-pentanone or diethyl ketone. The given reactant, CH₃CH(CH₂OH)CH₃, is a secondary alcohol.

The alcohol functional group will undergo oxidation with the help of the oxidizing agent, CrO₃/H₂SO₄. The following are the steps involved in the oxidation reaction:

Step 1: Formation of Chromate Ester. CH₃CH(CH₂OH)CH₃ is added to H₂SO₄ in the presence of CrO₃. This results in the formation of chromate ester as shown below:

Step 2: Hydrolysis of Chromate Ester. Chromate ester undergoes hydrolysis in aqueous H₂SO₄ (dilute) and forms a carbonyl compound or ketone. Here, CH₃CH(CH₂OH)CH₃ undergoes hydrolysis to form 3-pentanone or diethyl ketone as shown below: The organic product of the given reaction is 3-pentanone or diethyl ketone.

Thus, the organic product of the given reaction is 3-pentanone or diethyl ketone.

To know more about organic product, refer

https://brainly.com/question/28383565

#SPJ11

study this chemical reaction: ti 2i2 tii4 then, write balanced half-reactions describing the oxidation and reduction that happen in this reaction.

Answers

The balanced half-reactions that describe the oxidation and reduction that happen in the chemical reaction ti + 2i2 ⟶ tii4 are: Oxidation half-reaction: Ti → Ti4+ + 4e⁻Reduction half-reaction:I2 + 2e⁻ → 2I⁻Explanation:In this chemical reaction, Ti is oxidized to Ti4+ and I2 is reduced to 2I⁻.

This reaction can be split into two half-reactions: oxidation half-reaction and reduction half-reaction.In the oxidation half-reaction, Ti loses four electrons to form Ti4+. Therefore, it is an oxidation half-reaction and is written as: Ti → Ti4+ + 4e⁻In the reduction half-reaction, I2 gains two electrons to form 2I⁻. Therefore, it is a reduction half-reaction and is written as:I2 + 2e⁻ → 2I⁻The two half-reactions are balanced with respect to both mass and charge.

Therefore, the balanced half-reactions that describe the oxidation and reduction that happen in the chemical reaction ti + 2i2 ⟶ tii4 are: Oxidation half-reaction:Ti → Ti4+ + 4e⁻Reduction half-reaction:I2 + 2e⁻ → 2I⁻

To learn more about oxidation visit;

https://brainly.com/question/13182308

#SPJ11

to separate a mixture of p-toluidine and p-nitrotoluene dissolved in ether,extract the ether solution with aqueous hcl and treat the water layer with aqueous naoh. true

Answers

The answer to the given question is given as follows:

given question talks about separating a mixture of p-toluidine and p-nitrotoluene dissolved in ether. To separate this mixture, we need to extract the ether solution with aqueous HCl and then treat the water layer with aqueous NaOH.

Now, we will discuss each step of this process in detail:

Step 1: Extraction of Ether Solution with Aqueous HCl

In this step, we are going to extract the ether solution with aqueous HCl. This step is carried out to convert p-nitrotoluene into p-nitrotoluene acid. The basic principle of this step is that p-toluidine is a base and p-nitrotoluene is a neutral compound. Therefore, when we add HCl, it will protonate p-toluidine, and it will form an ion that will be extracted in the aqueous phase. Whereas, p-nitrotoluene will remain in the organic phase. The resulting mixture will contain an aqueous layer and an organic layer. The organic layer is of our interest as it contains the compound that we are going to extract.

Step 2: Treatment of the Water Layer with Aqueous NaOH

In this step, we are going to treat the water layer with aqueous NaOH. This step is carried out to convert p-nitrotoluene acid into p-nitrotoluene. The basic principle of this step is that p-nitrotoluene acid is an acid, and when we add NaOH, it will react with p-nitrotoluene acid and convert it into p-nitrotoluene.

This reaction is given below:

p-nitrotoluene acid + NaOH → p-nitrotoluene + NaNO2 + H2O

This reaction takes place only in the aqueous phase as both the reactants are present in the aqueous layer. So, the resulting mixture will contain an aqueous layer and an organic layer. The organic layer is of our interest as it contains the compound that we are going to extract.

Step 3: Final Extraction of Organic Layer

In this step, we are going to extract the organic layer from the mixture. The organic layer contains the compound that we are going to extract. So, we can evaporate the solvent, and we will get the desired compound that is p-nitrotoluene. Hence, the final product of this process will be p-nitrotoluene.

Learn more about p-toluidine and p-nitrotoluene from this link:

https://brainly.in/question/1837733

#SPJ11

Draw all the substitution products that will be formed from the following SN2 reactions:
cis-1-bromo-4-methylcyclohexane and hydroxide ion
trans-1-iodo-4-ethylcyclohexane and methoxide ion
cis-1-chloro-3-methylcyclobutane and ethoxide ion

Answers

An SN2 reaction is a type of nucleophilic substitution reaction that is characterized by a one-step mechanism in which a nucleophile attacks an electron-deficient substrate in the transition state. The reaction occurs with inversion of configuration at the stereocenter.

Let's consider each reaction and draw the substitution products that will be formed.

1. Reaction of cis-1-bromo-4-methylcyclohexane and hydroxide ion:

The hydroxide ion is a strong nucleophile. It will attack the carbon atom of the substrate that is directly bonded to the bromine atom in an SN2 reaction. The configuration of the cyclohexane ring will change from cis to trans due to the inversion of configuration at the stereocenter. Therefore, the substitution product formed is trans-1-bromo-4-methylcyclohexane.

2. Reaction of trans-1-iodo-4-ethylcyclohexane and methoxide ion:

The methoxide ion is also a strong nucleophile. It will attack the carbon atom of the substrate that is directly bonded to the iodine atom in an SN2 reaction. The configuration of the cyclohexane ring will change from trans to cis due to the inversion of configuration at the stereocenter. Therefore, the substitution product formed is cis-1-iodo-4-ethylcyclohexane.

3. Reaction of cis-1-chloro-3-methylcyclobutane and ethoxide ion:

The ethoxide ion is a strong nucleophile. It will attack the carbon atom of the substrate that is directly bonded to the chlorine atom in an SN2 reaction. The configuration of the cyclobutane ring will change from cis to trans due to the inversion of configuration at the stereocenter. Therefore, the substitution product formed is trans-1-chloro-3-methylcyclobutane.

In summary, the substitution products formed from the given SN2 reactions are trans-1-bromo-4-methylcyclohexane, cis-1-iodo-4-ethylcyclohexane, and trans-1-chloro-3-methylcyclobutane.

To learn more about nucleophilic visit;

https://brainly.com/question/31425447

#SPJ11

how many babies make up quintuplets

Answers

Answer:

Explanation:

Quintuplets refer to a set of five babies born from the same pregnancy. Therefore, quintuplets consist of five babies in total.

what is the molar solubility of copper (ii) hydroxide in a solution buffered at ph = 10.0?

Answers

The molar solubility of copper (II) hydroxide in a solution buffered at pH = 10.0 is 4.47x10⁻⁶. The dissociation of Cu(OH)₂ in water is as follows: Cu(OH)₂ → Cu²⁺ + 2OH⁻

The solubility of a substance is the concentration of the substance that can be dissolved in a solvent to form a saturated solution. This means that the amount of substance that can be dissolved in a solvent is dependent on the solubility of the substance in the solvent.Copper (II) hydroxide is sparingly soluble in water. Its solubility is dependent on the pH of the solution. This means that the concentration of copper ions and hydroxide ions in solution is also dependent on the pH of the solution. The solubility product constant (Ksp) of Cu(OH)₂ can be represented as: Ksp = [Cu²⁺][OH⁻]²

The pH of the solution is 10.0, which means that the concentration of hydroxide ions in solution can be calculated as:OH⁻ = 10⁻¹⁰From the stoichiometry of the reaction, we know that the concentration of copper ions in solution would be twice the concentration of hydroxide ions in solution. Thus:[Cu²⁺] = 2[OH⁻] = 2(10⁻¹⁰) = 2x10⁻¹⁰Substituting the values of [Cu²⁺] and [OH⁻] into the solubility product expression, we get:

Ksp = [Cu²⁺][OH⁻]² = 2x10⁻¹⁰(10⁻¹⁰)² = 2x10⁻³⁰. The molar solubility (s) of copper (II) hydroxide is the concentration of copper (II) hydroxide that can dissolve in the solvent (water) to form a saturated solution. At equilibrium, the concentration of copper ions in solution would be equal to the concentration of copper (II) hydroxide that has dissolved in water. Thus:[Cu²⁺] = s

The concentration of hydroxide ions in solution can also be calculated using the Kw expression: Kw = [H⁺][OH⁻] = 10⁻¹⁴[OH⁻] = Kw/[H⁺] = 10⁻¹⁴/10⁻¹⁰ = 10⁻⁴

Substituting the values of [Cu²⁺] and [OH⁻] into the solubility product expression and simplifying: Ksp = [Cu²⁺][OH⁻]² = s(10⁻⁴)² = 2x10⁻³⁰s = √(Ksp/[OH⁻]²) = √(2x10⁻³⁰/(10⁻⁴)²) = 4.47x10⁻⁶

The molar solubility of copper (II) hydroxide in a solution buffered at pH = 10.0 is 4.47x10⁻⁶.

To know more about molar solubility, refer

https://brainly.com/question/28202068

#SPJ11

how many liters of no can be produced when 25l 02 are reacted with 25l nh3?

Answers

25 L of NO can be produced when 25 L of O2 are reacted with 25 L of NH3.

The balanced equation for the reaction between O2 and NH3 is given below;4 NH3 + 5 O2 → 4 NO + 6 H2OFrom the balanced equation above, 4 moles of NH3 react with 5 moles of O2 to produce 4 moles of NO and 6 moles of water. Now let's calculate the number of moles of O2 available;

Moles of O2 = Volume of O2 ÷ Molar volume= 25/22.4= 1.116 moles of O2Now we need to find the number of moles of NH3;Since the volume of NH3 is the same as O2,Moless of NH3 = Volume of NH3 ÷ Molar volume= 25/22.4= 1.116 moles of NH3

The reaction between 1.116 moles of NH3 and 1.116 moles of O2 produces 1.116 moles of NO. The volume of NO produced can be calculated as follows; Volume of NO = Number of moles of NO x Molar volume of NO= 1.116 x 22.4= 25 L

Therefore, 25 L of NO can be produced when 25 L of O2 are reacted with 25 L of NH3.

To learn more about reaction visit;

https://brainly.com/question/30464598

#SPJ11

identify the strongest imf exhibited between two nh2chchch3 molecules.

Answers

The strongest intermolecular forces exhibited between two NH₂CH(CH₃) molecules are hydrogen bonds.

Hydrogen bonds are the strongest intermolecular forces in most cases and they occur when a molecule contains hydrogen attached to an oxygen, nitrogen, or fluorine atom. The NH₂CH(CH₃) molecule has a nitrogen atom attached to two hydrogen atoms and a methyl group. These nitrogen atoms are able to form hydrogen bonds with other nitrogen atoms due to their electronegativity. As a result, hydrogen bonds are the strongest intermolecular forces between two NH₂CH(CH₃) molecules.

Hydrogen bonds are the strongest type of intermolecular force because they have a large amount of energy and are very stable. This is due to the fact that the bond is formed between a hydrogen atom and an electronegative atom such as nitrogen, oxygen, or fluorine, which causes the hydrogen to become partially positively charged and the electronegative atom to become partially negatively charged. This allows for strong electrostatic attractions to form between molecules.

Learn more about intermolecular forces at https://brainly.com/question/12243368

#SPJ11

which of the following is the stronger brønsted-lowry acid, hclo3 or hclo2?

Answers

HClO3 is the stronger Brønsted-Lowry acid between the two compounds.

In the Brønsted-Lowry acid-base theory, an acid is defined as a substance that donates a proton (H+) and a base is a substance that accepts a proton. To determine which of the two acids, HClO3 or HClO2, is stronger, we need to assess their ability to donate a proton.

HClO3, also known as chloric acid, has a central chlorine atom bonded to three oxygen atoms and one hydrogen atom. The presence of three electronegative oxygen atoms surrounding the central chlorine atom increases the acidity of HClO3. The oxygen atoms withdraw electron density from the chlorine atom, making it more willing to donate a proton, thus making HClO3 a stronger acid.

HClO2, also known as chlorous acid, has a similar structure with a central chlorine atom bonded to two oxygen atoms and one hydrogen atom. Compared to HClO3, HClO2 has fewer electronegative oxygen atoms surrounding the central chlorine atom. This reduced electron withdrawal decreases the acidity of HClO2, making it a weaker acid compared to HClO3.

Therefore, HClO3 is the stronger Brønsted-Lowry acid between the two compounds.

Know more about Brønsted-Lowry acid here:

https://brainly.com/question/32276007

#SPJ11

na2s(aq)+cu(no3)2(aq)→nano3(aq)+cus(s) express your answers as integers separated by commas.

Answers

The answer in integers separated by commas in the balanced equation is:

Sulfide ion (-2), Copper ion (+2), Copper sulfide.

The following is the balanced equation of the chemical reaction:

[tex]$$Na_2S(aq) + Cu(NO_3)_2(aq) \to NaNO_3(aq) + CuS(s)$$[/tex]

In this chemical reaction, the following are the reactants and products:

Reactants: Na2S (aq), Cu(NO3)2 (aq)

Products: NaNO3 (aq), CuS (s)

To balance the equation, one needs to determine the coefficients for each element such that the number of atoms of each element is the same on both sides of the equation.

To do this, one needs to count the atoms on both the reactant and product sides of the chemical equation.

The balanced chemical reaction:

[tex]$$Na_2S(aq) + Cu(NO_3)_2(aq) \to NaNO_3(aq) + CuS(s)$$[/tex]

According to the above equation, two sodium atoms (2Na), two sulfur atoms (S), two copper atoms (Cu), six oxygen atoms (6O), are present on both sides. So the chemical equation is balanced.

The balanced chemical equation:

[tex]$$Na_2S(aq) + Cu(NO_3)_2(aq) \to NaNO_3(aq) + CuS(s)$$[/tex]

The ionic equation of the chemical reaction is:

[tex]$$Na^{+}(aq) + S^{2-}(aq) + Cu^{2+}(aq) + 2NO_{3}^{-}(aq) \to Na^{+}(aq) + NO_{3}^{-}(aq) + CuS(s)$$[/tex]

The chemical reaction can be represented by the net ionic equation.

[tex]$$S^{2-}(aq) + Cu^{2+}(aq) \to CuS(s)$$[/tex]

Thus, the answer in integers separated by commas is:

Sulfide ion (-2), Copper ion (+2), Copper sulfide.

Learn more about balanced equation at: https://brainly.com/question/11904811

#SPJ11

using appendix d in the textbook, calculate the molar solubility of agbr in 0.12 m nabr solution.

Answers

The molar solubility of AgBr in 0.12 M NaBr solution is 2.3 × 10⁻⁵ mol/L.

To calculate the molar solubility of AgBr in 0.12 M NaBr solution using Appendix D in the textbook, follow these steps:

1. Write the balanced chemical equation of AgBr dissociation in water. AgBr(s) ⇌ Ag⁺(aq) + Br⁻(aq)

2. Write the expression for the solubility product constant (Ksp). Ksp = [Ag⁺][Br⁻]

3. Determine the value of Ksp from Appendix D in the textbook. Ksp for AgBr = 5.0 × 10⁻¹³

4. Assume that x mol/L of AgBr dissolves in water, then the concentration of Ag⁺ ions in the solution will be x mol/L, and the concentration of Br⁻ ions will be x mol/L (from the balanced chemical equation).

5. Use the concentration of NaBr solution (0.12 M) to determine the concentration of Br⁻ ions in the solution. Br⁻ ion concentration = 0.12 M

6. Substitute the concentration of Br⁻ ions and the expression for Ksp into the expression for Ksp, and solve for x. Ksp = [Ag⁺][Br⁻]5.0 × 10⁻¹³ = (x)(0.12+x)x = 2.3 × 10⁻⁵ mol/L

Therefore, the molar solubility of AgBr in 0.12 M NaBr solution is 2.3 × 10⁻⁵ mol/L.

Learn more about molar solubility at https://brainly.com/question/28202068

#SPJ11

PLEASE HELP ME 100 POINTS RIGHT ANSWERS ONLY!!! :)
There are 8 g of chlorine in 2,000,000 g of water in a pool.
How many ppm chlorine are in the pool?
part/whole x 1,000,000

Answers

There are 4,000 parts per million (ppm) of chlorine in the pool.

To calculate the parts per million (ppm) of chlorine in the pool, we can use the formula:

ppm = (part / whole) x 1,000,000

In this case, the part is the amount of chlorine, which is given as 8 g, and the whole is the amount of water, which is 2,000,000 g. Substituting these values into the formula, we get:

ppm = (8 g / 2,000,000 g) x 1,000,000

Simplifying this expression, we find:

ppm = (4 x 10^-6) x 1,000,000

ppm = 4,000

This means that for every one million parts of the pool's water, there are 4,000 parts of chlorine. In other words, the concentration of chlorine in the pool is 4,000 ppm, indicating a relatively high level of chlorine compared to the water.

for such more questions on  chlorine

https://brainly.com/question/24218286

#SPJ8

identify the conjugate acid-base pairs in this reaction: hbr(aq) nh3(aq) ⇔ br–(aq) nh4 (aq)

Answers

The conjugate acid-base pairs in the reaction HBr(aq) + [tex]NH_3[/tex](aq) ⇔[tex]Br^-[/tex](aq) + [tex]NH_4^+[/tex](aq) are HBr/[tex]NH_4^+[/tex] and [tex]NH_3/Br^-[/tex].

In the given reaction, HBr acts as an acid, donating a proton ([tex]H^+[/tex]) to [tex]NH_3[/tex], which acts as a base. As a result, [tex]NH_3[/tex] gains a proton to form its conjugate acid, [tex]NH_4^[/tex]. In this acid-base pair, [tex]NH_4^[/tex] is the conjugate acid since it is formed by accepting a proton from HBr.

Conversely, HBr loses a proton and becomes its conjugate base, [tex]Br^-[/tex]. Thus, [tex]Br^-[/tex] is the conjugate base of HBr. The reaction can proceed in both directions, indicating the reversible nature of the acid-base reaction, with the formation of the conjugate acid-base pairs [tex]NH_4^+/Br^-[/tex] and HBr/[tex]NH_3[/tex].

To learn more about conjugate follow the link:

https://brainly.com/question/32363058

#SPJ4

hydrogen can be prepared by suitable electrolysis of aqueous sodium salts. true or false?

Answers

False.

hydrogen can not be prepared by suitable electrolysis of aqueous sodium salts.

Hydrogen gas (H₂) can be prepared by the electrolysis of water, not aqueous sodium salts. During the process of electrolysis of water, the water molecule (H₂O) is split into hydrogen gas (H₂) and oxygen gas (O₂) using an electric current. This process occurs in an electrolytic cell with two electrodes, where hydrogen gas is produced at the cathode and oxygen gas is produced at the anode.

The electrolysis of aqueous sodium salts typically results in the production of sodium hydroxide (NaOH) or sodium metal (Na) at the cathode, depending on the specific conditions and electrolyte used. Hydrogen gas is not typically produced as a direct product of the electrolysis of aqueous sodium salts.

To know more about sodium visit:

brainly.com/question/5419833

#SPJ11

if the enthalpy of sublimation is 29.49kjmol, what is the enthalpy of deposition? select the correct answer below: 29.49kjmol −29.49kjmol −88.47kjmol there is not enough information to determine this

Answers

The enthalpy of deposition is the opposite process of the enthalpy of sublimation.

The enthalpy of deposition is the process of a gas molecule changing directly to a solid phase by releasing energy.

The enthalpy of sublimation is the process of a solid changing directly to a gas phase by absorbing energy.

So, we can write, Enthalpy of Deposition = - Enthalpy of Sublimation= - 29.49 kJ/mol

29.49 kJ/mol`Explanation:Given, Enthalpy of Sublimation = 29.49 kJ/molThe enthalpy change of deposition is equal to the negative of the enthalpy change of sublimation. Thus,Enthalpy of Deposition = - Enthalpy of Sublimation= - 29.49 kJ/mol Hence, the enthalpy of deposition is `-29.49 kJ/mol`.Therefore, the correct option is b. `-29.49kJmol`.The

summary is: If the enthalpy of sublimation is 29.49kJmol, the enthalpy of deposition would be -29.49kJmol.

Learn more about sublimation click here:

https://brainly.com/question/29624780

#SPJ11

Which of the following species possesses a delocalized bond? 1. H2S 2. No molecule given here possesses a delocalized bond. 3. H2O 4. NO?3 5. NCl3

Answers

Out of the given options, the species that possesses a delocalized bond is NO₃.

The delocalized bond is defined as the type of chemical bonding where the electrons are not confined to a particular bond between a set of two atoms but are free to move in the molecule as a whole. Therefore, out of the given species:

1. H₂S: It is a covalent compound that has a single covalent bond between the two atoms and does not possess a delocalized bond.

3. H₂O: It is a covalent compound that has a single covalent bond between the two hydrogen atoms and one oxygen atom and does not possess a delocalized bond.

4. NO₃: It is a covalent compound that has a double bond between one nitrogen atom and three oxygen atoms, and it is the only species among the given options that possess a delocalized bond.

5. NCl₃: It is a covalent compound that has three single covalent bonds between nitrogen and three chlorine atoms and does not possess a delocalized bond.

Hence, the correct option is 4. NO3.

Learn more about delocalized bonds at https://brainly.com/question/31382995

#SPJ11

solid nickel reacts with aqueous lead (ii) nitrate to form solid lead. what is the net ionic equation for this reaction?

Answers

The chemical equation for this reaction is:

Ni(s) + Pb(NO3)2(aq) → Pb(s) + Ni(NO3)2(aq)

The ionic equation for this reaction is:

Ni(s) + Pb2+(aq) + 2 NO3-(aq) → Pb(s) + Ni2+(aq) + 2 NO3-(aq)

The net ionic equation can be obtained by canceling the spectator ions (the ions that appear on both sides of the equation and do not participate in the reaction):

Ni(s) + Pb2+(aq) → Pb(s) + Ni2+(aq)

So, the net ionic equation for this reaction is:

Ni(s) + Pb2+(aq) → Pb(s) + Ni2+(aq)

Goodluck!

The net ionic equation for the reaction between solid nickel and aqueous lead (II) nitrate is: Ni(s) + Pb2+(aq) → Pb(s) + Ni2+(aq)

Explanation: The net ionic equation involves the reactants that are involved in the reaction, as well as the products formed. The term "net" means that the spectator ions are removed from the equation.

Nickel is a solid and, therefore, has no charge. It does not dissolve in the aqueous solution and is written in its solid state. Lead (II) nitrate is dissolved in water to form lead ions and nitrate ions.

The molecular equation for the reaction is: Ni(s) + Pb(NO3)2(aq) → Pb(s) + Ni(NO3)2(aq)

To obtain the net ionic equation, the spectator ions are removed from the above equation. The nitrate ion is a spectator ion, and it does not participate in the reaction.Ni(s) + Pb2+(aq) → Pb(s) + Ni2+(aq)

Therefore, the net ionic equation for the reaction between solid nickel and aqueous lead (II) nitrate is Ni(s) + Pb2+(aq) → Pb(s) + Ni2+(aq).

To learn more about ionic visit;

https://brainly.com/question/29523788

#SPJ11

determine the quantities shown below for a solution that is 0.0840 m in methylamine,ch3nh2. the ka for the ch3nh3 ion is 2.33 ✕ 10−10. kw = 1.000 ✕ 10−14

Answers

Given,Concentration of CH3NH2, c = 0.0840 mKa of CH3NH3+, Ka = 2.33 × 10^-10Kw = 1.000 × 10^-14We need to determine the following quantities.

[H3O+], [OH-], [CH3NH3+], % ionization.Let's find the value of Kb for CH3NH2 and then we can use it to calculate [OH-].We know that,Kw = Ka × Kb1.000 × 10^-14 = 2.33 × 10^-10 × KbKb = 4.29 × 10^-5pKb = -log(Kb) = -log(4.29 × 10^-5) = 4.37pH + pOH = pKw = 14pOH = 14 - pHWe know that methylamine is a weak base and it reacts with water to form the following equilibrium.CH3NH2 + H2O ⇌ CH3NH3+ + OH-Initial Conc(c)   0             0               0Equilibrium  c-x           x              xOn writing the Kb expression, we getKb = [CH3NH3+][OH-]/[CH3NH2][OH-] = Kb × [CH3NH2]/[CH3NH3+][OH-] = [CH3NH2]/KbTherefore, x/Kb = [OH-]x = [OH-] = Kb × [CH3NH2] / = 4.29 × 10^-5 × 0.0840 / = 3.61 × 10^-6Now,pH + pOH = 14pH + 3.14 = 14pH = 10.86[H3O+] = 10^-pH = 1.26 × 10^-11Let's calculate the % ionization.% ionization = (concentration of CH3NH3+ at equilibrium / initial concentration of CH3NH2) × 100% ionization = (x/c) × 100% ionization = (3.61 × 10^-6/0.0840) × 100% ionization = 0.0043%Therefore, the quantities shown below for a solution that is 0.0840 m in methylamine are,[H3O+] = 1.26 × 10^-11[OH-] = 3.61 × 10^-6[CH3NH3+] = 3.61 × 10^-6% ionization = 0.0043%

To know more about concentration , visit ;

https://brainly.com/question/17206790

#SPJ11

write the balanced nuclear equation for the beta decay of calcium-47.

Answers

The beta decay of calcium-47 can be expressed in a balanced nuclear equation as follows:

[tex]$$\mathrm{^{47}_{20}Ca \to\ ^{47}_{21}Sc +\beta^-}$$[/tex]

Nuclear decay occurs when the nucleus of an unstable atom spontaneously emits particles in the form of radiation. Beta decay is one of the three types of radioactive decay that occur in unstable atoms.

It is characterized by the emission of an electron or a positron from the nucleus of the atom.Calcium-47 is an isotope of calcium that is used in medical research and applications such as positron emission tomography.

The beta decay of calcium-47 can be expressed in a balanced nuclear equation as follows:

[tex]$$\mathrm{^{47}_{20}Ca \to\ ^{47}_{21}Sc +\beta^-}$$[/tex]

This balanced nuclear equation shows that the nucleus of calcium-47 undergoes beta decay by emitting an electron (β-) and transforming into scandium-47.

In this process, the atomic number of calcium-47, which is 20, increases by one to become 21, which is the atomic number of scandium.

This means that the beta particle that is emitted is actually an electron that is formed from a neutron that is transformed into a proton and an electron.

The proton remains in the nucleus, while the electron is emitted from the nucleus as beta radiation.

The balanced nuclear equation for the beta decay of calcium-47 is thus:

[tex]\[\ce{^{47}_{20}Ca - > ^{47}_{21}Sc + ^0_{-1}e}\]\\[/tex]

The above equation represents the beta decay of calcium-47 by the emission of a beta particle (an electron) and the transformation of the calcium-47 nucleus into a nucleus of scandium-47.

Learn more about Nuclear decay at: https://brainly.com/question/12868773

#SPJ11

the kp for the reaction below is 1.49 × 108 at 100.0°c: co(g) cl2(g) → cocl2(g)

Answers

The value of Kp for the given reaction: co(g) + cl2(g) → cocl2(g) at 100.0° C is 1.49 × 10⁸. Now we need to find the value of Kc at the same temperature.

We know that Kp = Kc(RT)^Δng, where Δng is the change in the number of moles of gaseous products minus the number of moles of gaseous reactants.Here, Δng = 1 - 2 = -1 as we have one gaseous reactant and two gaseous products. R is the ideal gas constant, T is the temperature, and Kp is the equilibrium constant in terms of pressure, and Kc is the equilibrium constant in terms of concentration, thus;Kp = Kc(RT)^Δng1.49 × 10⁸ = Kc(RT)^-1Taking natural logs on both sides;ln 1.49 × 10⁸ = ln Kc + (-1) ln RTln 1.49 × 10⁸ = ln Kc - ln RT1.49 × 10⁸/RT = KcThis is the main answer where we have found the value of Kc. Let's move on to the explanation:The value of Kp at 100°C is 1.49 × 10⁸. We can use the equation Kp = Kc(RT)^Δng to find the value of Kc, where Δng is the change in the number of moles of gaseous products minus the number of moles of gaseous reactants, R is the ideal gas constant, T is the temperature, and Kp and Kc are the equilibrium constants in terms of pressure and concentration respectively.We can calculate the value of Kc by rearranging the equation as follows: Kc = Kp/(RT)^Δng.

Substituting the given values, we get;Kc = 1.49 × 10⁸/(8.314 J K⁻¹ mol⁻¹ × 373.15 K)^(-1) = 1.41 × 10⁵ M⁻¹The summary of the answer is that the value of Kc at 100.0°C is 1.41 × 10⁵ M⁻¹.

Learn more about temperature click here:

https://brainly.com/question/27944554

#SPJ11

28. draw the orbital diagram of a secondary vinylic carbocation.

Answers

A carbocation is a carbocation that has a positive charge on a carbon atom. A vinylic carbocation is a carbocation that has a positive charge on a carbon atom that is bonded to a vinyl group. A secondary vinylic carbocation is a carbocation that has a positive charge on a carbon atom that is bonded to two other carbon atoms and a vinyl group.

The orbital diagram of a secondary vinylic carbocation: An orbital diagram is a visual representation of an atom's electronic structure. The orbital diagram of a secondary vinylic carbocation would show the carbon atom with a positive charge and its neighboring atoms. The carbon atom with the positive charge would have three valence electrons in the 2p orbital and would have an empty 2p orbital. The neighboring carbon atoms and the vinyl group would be represented by their valence orbitals, which would overlap with the carbon atom with the positive charge, forming a pi bond. The overlap of these orbitals would help stabilize the positive charge on the carbon atom with the positive charge.

To Know more about vinylic carbocation visit:

brainly.com/question/29750400

#SPJ11

(d) what is δû(/) if hbr (v) is heated from 20°c to 65°c at constant specific volume (25000 l/mol)?

Answers

Given values: The initial temperature of hbr (v) is 20°C and the final temperature is 65°C. The constant specific volume of hbr (v) is 25000 l/mol.Let's use the formula to calculate δû(/).The equation for calculating δû(/) is:δû(/) = (3/2) nR δTFor monoatomic gases, the internal energy of a gas is directly proportional to the change in temperature.

However, HBr is not a monoatomic gas, so we need to use a different formula. The formula for internal energy of a gas isδU = nCvd THere, Cv is the specific heat of the gas at constant volume. To obtain δû(/), we need to know the specific heat of the gas at constant volume. Using the formula, δU = nCvdT Where n = 1 mole, Cv = 20.786 J/(mol.K), and δT = 45°C,∴ δ û(/) = nCvd T = 1 mol × 20.786 J/(mol.K) × 45 °C = 935.37 J Explanation: Given: Initial temperature of HBr (v) is 20°C and the final temperature is 65°C. The constant specific volume of HBr (v) is 25000 l/mol. The formula for calculating the internal energy of a gas is δU = nCvdT. Here, Cv is the specific heat of the gas at constant volume. To calculate δû(/), we first need to calculate δU:δU = nCvd THere, n = 1 mol, Cv = 20.786 J/(mol.K), and δT = 45°C. Therefore, δ U = nCvdT = 1 mol × 20.786 J/(mol.K) × 45 °C = 935.37 J. To calculate δû(/), we use the formula:δû(/) = (3/2) nR δT. For HBr (v), the specific heat at constant volume is not known, so we cannot use the ideal gas law. We use the formula for internal energy instead. Thus, δû(/) = δU = 935.37 J.

For more information on ideal gas law visit:

brainly.com/question/12624936

#SPJ11

given the following information, calculate ∆rg° for the reaction below at 25 °c. 2 zn(s) tio2(s) → 2 zno(s) ti(s)

Answers

The value of ΔG° for the above reaction at 25 °C is calculated as -53.4 kJ/mol. The given reaction is : 2 Zn(s) Tio₂(s) → 2 Zno(s) + Ti(s).

We need to use the following equation to calculate ∆rg° :ΔG° = ΔH° – TΔS°The standard Gibbs free energy of formation, ∆G°f , is calculated using the Gibbs-Helmholtz equation:ΔG°f = -RT ln K, where K is the equilibrium constant, R is the gas constant, and T is the temperature.

Therefore, we need to calculate the standard Gibbs free energy of formation of the reactants and products first and then use them to calculate the value of ΔG°f for the above reaction. This data can be found in tables of thermodynamic values for standard enthalpy of formation, ΔH°f , and standard entropy, ΔS° , and standard Gibbs free energy of formation, ΔG°f, for chemical substances at standard temperature and pressure (STP).

The standard Gibbs free energy of formation of Zn(s) is 0, TiO₂(s) is - 947.3, ZnO(s) is - 348.1, and Ti(s) is 0 kJ/mol.

From the above data we can calculate the value of ∆G° for the reaction using the following equation:∆G° = ∑n∆G°f(products) - ∑m∆G°f(reactants)where n and m are the stoichiometric coefficients of the products and reactants, respectively. Thus,∆G° = [2∆G°f(ZnO) + ∆G°f(Ti)] - [2∆G°f(Zn) + ∆G°f(TiO₂)]

∆G° = [2(- 348.1 kJ/mol) + 0] - [2(0) + (- 947.3 kJ/mol)]∆G° = - 53.4 kJ/mol

Therefore, the value of ΔG° for the above reaction is -53.4 kJ/mol.

To know more about ΔG°, refer

https://brainly.com/question/31322129

#SPJ11

Other Questions
Solve the IVP dy = 2xy + y; y(0) = -3. dx 7. Consider the IVP dy dx xVy 1; y(1) = 0. Does there exist a solution which satisfies the given initial condition? If there is a solution, is it unique? 9. Find the general solution to the first-order linear differential equation dy t dt + 2y =t t. Indicate which orbitals overlap to form the bonds in the following molecules.BeBr2between a hybrid sp orbital on Be and a p orbital on Brbetween an s orbital on Be and a p orbital on Brbetween a hybrid sp2 orbital on Be and a p orbital on Brbetween a p orbital on Be and a hybrid sp orbital on BrNH3between a hybrid sp orbital on N and an s orbital on Hbetween a hybrid sp2 orbital on N and an s orbital on Hbetween a hybrid sp3 orbital on N and an s orbital on Hbetween a p orbital on H and an s orbital on N In one country, the current account deficit is at the level of 10 billion dollars. This deficit will increase by $2 billion every year in the next five years. This country meets only half of the deficit from its financial account (FDI and other short term portfolio investments) each year. The central bank's foreign currency reserves are $5 billion and will increase by one billion a year in the next five years. If the country applies a fixed exchange regime, what would be your expectation for the country's foreign exchange market the next five years? 20ses subjective question, hence you have to write your answer in the Text Field given below 76306 As a member of the Social Initiative Council of your company, you wish to start an old clothes collection drive. These clothes are to be donated to an orphanage nearby Write a proposal in not more than 500 words, stating the steps you would take to make it a success (15 Marks) 2022 Options Find the area of the shaded region. Leave your answer in terms of pi and in simplest radical form. Topic" cloud logistics effects on productivity within knustford express entity " how will these information be gathered 1. samples 2. method of data collection Sultan is an entrepreneur who owns a marble factory. Like many other businesses, Sultans business was impacted by the pandemic. Answer the following questions to help sultan:List and explain five retrenchment strategies that Sultan may adopt within his companys corporate strategy? (10 marks)List and explain five strategies that Sultans company should avoid? (10 marks) 1244) y=(C1)exp (Ax) + (C2)exp (Bx) is the general solution of the second order linear differential equation: (y'') + (-9y') + ( 14y) = 0. Determine A and B where A>B. This exercise may show "+ (-#)" which should be enterered into the calculator as "-#", and not "+-#".ans: 2 14 mohmohHW300t 1246) y=[(C1)+(C2)x] exp (Ax) is the general solution of the second order linear differential equation: (y'') + ( 8y') + ( 16y) = 0. Determine This exercise may show "+ (-#)" which should be enterered into the calculator as "-#", and not "+-#". ans: 1 14 mohmohHW300t 1248) y=exp (Ax) [(C1)cos (Bx) + (C2) sin(Bx)] is the general solution of the second order linear differential equation: (y'') + (-16y') + ( 68y) = 0. Determine A & B. This exercise may show "+ (-#)" which should be enterered into the calculator as "-#", and not "+-#". ans: 2 = A. = Suppose that the only eigenvalue of A Mn is = 1.Show that A is similar to Ak for each k = 1, 2,3,... Emily Jones was very upset and felt she was being picked on by the government. She was worried she was being targeted and her business would suffer. Sure, she was not familiar with all the regulations, and therefore may have not complied with everything she should have. She was furious that this situation may put her out of business.Five years ago, Emily started her own cleaning business. She provided customers with proper invoices and was well regarded for her services. Emily had a lawyer set up her business as a Corporation (Clean Sweep Inc.) so that she would sound professional. She was fully insured and had never had any problems.It was a slow start, but business picked up quickly and within the first year, Emily had to hire two additional employees to keep up with the demand. A friend had advised Emily, that instead of hiring the cleaners as employees, she should hire them as subcontractors and avoid a lot of additional paperwork and headaches. The new employees used all of Emilys equipment and supplies, but they had their own vehicles to travel from client to client. Emily also advised she would pay them a flat rate for each job they did, and they would cover their own transportation costs. Each would also have to file their own tax returns.The business continued to grow with Emilys excellent reputation, and she found herself working constantly to schedule appointments and still try to do some of the cleaning herself. Emilys workers seemed happy, rarely complained and everyone got a long well. Because of the busy schedule, Emily knew she had not kept on top of her accounting, and she was getting consistent reminders about unfiled personal and corporate tax returns. As Emily was making a lot of money, and had little time to spend it, she figured she would have enough to cover whatever she may have owed to the government.Emily finally got around to seeing an accountant to help her through filing her taxes. She thought "better late than never!" but was disappointed to find out that the Canadian Revenue Agency was not able to process her tax return because the corporation had been dissolved due to her failure to send in her corporate tax returns. Additionally, the Canadian Revenue Agency was threatening legal action over the unpaid taxes. The accountant also advised Emily that there would be a lot of paperwork and it would take time to get her corporation reinstated. Furthermore, the accountant had advised Emily she should have been charging her customers HST. Emily explained she thought that was just for retail stores, but the accountant let her know that she was also responsible to pay 13% of all the revenue she had made in HST immediately. However, the HST could not be filed or paid because the corporation had been dissolved.The following week things got worse. Emily was contacted by the Provincial Labour Board and was accused of paying one of her cleaners less than minimum wage; after time spent on the job and the transportation costs were calculated. Additionally, the other cleaner was not paying their taxes. It was explained to Emily, despite any contract they may have had, these were actually employees and she should have been deducting income tax, CPP and EI contributions which Emily will now be responsible for paying. She also may be fined for these infractions.Once you have familiarized yourself with the case study of Emily Jones, answer the following questions:Why should Emily have consulted an accountant when setting up her business?What procedures could have been set up? Selected comparative financial statement data for Golden Valley Inc. are shown below. GOLDEN VALLEY INC. Statement of Financial Position (partial) December 31 (in thousands) 2021 2020 2019 Current assets Cash $ 30 $ Trading investments 55 Accounts receivable, net 669 Inventory 630 Prepaid expenses 41 Total current assets $ 1,425 Total current liabilities $ 877 Additional information: (in thousands) Allowance for doubtful accounts Credit sales Cost of goods sold $ 2021 91 60 587 526 52 $ 1,316 $ 824 50 4,192 2,917 $ 60 40 499 580 29 $ 1,208 $ 756 2020 2019 $ 45 $ 40 3,929 3,697 2,632 2,355 Your answer is partially correct. Calculate all possible liquidity ratios for 2021 and 2020. (Round current ratio to 2 decimal places e.g. 2.66. Round receivables turnover and inventory turnover to 1 decimal place e.g. 6.2. Round collection period and days sales in inventory to 0 decimal places e.g. 1,266. Enter working capital amounts in thousands e.g. 525.) 2021 2020 Working capital Current ratio Receivables turnover Collection period Inventory turnover Days sales in inventory 548 1.62 :1 6.7 times 54.48 days 5 times 73 days 492 1.60 :1 7.2 times 50.69 days 4.8 times 76.04 days Your answer is partially correct. Calculate all possible liquidity ratios for 2021 and 2020. (Round current ratio to 2 decimal places e.g. 2.66. Round receivables turnover and inventory turnover to 1 decimal place e.g. 6.2. Round collection period and days sales in inventory to O decimal places e.g. 1,266. Enter working capital amounts in thousands e.g. 525.) 2021 2020 Working capital Current ratio Receivables turnover Collection period Inventory turnover Days sales in inventory LA 548 1.62 7.7 47 5 73 :1 times days times days 492 1.60 :1 6.3 times 58 days 4.8 times days 76.04 What contributed to banks being allowed (in 1980) to pay interest on checking accounts, and pay more than 5% on savings accounts?the SALT Treatythe elimination of the Gold Standardthe explosion of interstate bankinginflation 3 Solve Separable D.E 1 In y dx + dy = 0 X-2 y Select one: a. In (x-2) + (Iny) + c b. In (In x) + ln y + c c. Iny + In (x-2) + c d. In (x - 2) + In y + c This exercise asks you to use the index calculus to solve a discrete logarithm problem. Let p = 19079 and g = 17.(a) Verify that g^i (mod p) is 5-smooth for each of the values i = 3030, i = 6892, and i = 18312.(b) Use your computations in (a) and linear algebra to compute the discrete loga- rithms log_g (2), log_g (3), and log_g (5). (Note that 19078 = 2 9539 and that 9539 is prime.)(c) Verify that 19 17^12400 is 5-smooth.(d) Use the values from (b) and the computation in (c) to solve the discrete loga-rithm problem17^x 19 (mod 19079). 8. A nuclear fission reaction and a nuclear fusion reaction are similar because both reactionsa. Form heavy nuclides from light nuclidesb. Form light nuclides from heavy nuclidesc. Release a large amount of energyd.Absorb a large amount of energy9. Which equation is an example of artificial transmutation?a. Be + He 2C+onb. U+3F UFc. Mg(OH) + 2 HCI- 2HO + MgCld. Ca + 2HO Ca(OH) + H-a. Fissionb. Fusion-10. The diagram below represents a nuclear reaction in which a neutron bombards a heavynucleus. Which type of reaction does the diagram illustrate?NeutronUranium-235Uranium-236SmallerentsBanum-142EnergyKrypton-91NeutronNeutronNeutronc. Alpha decayd. Beta decayIdentify the type of nuclear reaction represented by equation 1..11. When a uranium-235 nucleus absorbs a slow-moving neutron, different nuclear reactions mayoccur. One of these possible reactions is represented by the complete, balanced equationbelow.Equation 1: 2352U +on - 236Kr + 4256Ba + 2on + energy-92 find the solutions pleaseIndirect costs, such as manufacturing overhead, are always fixed costs. Time left 0:22:04 When the level of activity increases, total variable cost will increase. True Avariable cost is a cost whose c 5) Contingency view emerged because: a) What worked in one organization may not work in another b) Industry affects organizations more than individuals c) Universalist views are too difficult to apply d) Toyota reinvented systems thinking 14) Heroes, slogans, and ceremonies are types of: a) demonstrations of corporate culture b) Symbols of affluence c) Predetermined company values d) Recognition for achievements You are planning measurements of vibrations of a flagpole in a strong wind flow. As the wake is also vibrating, you can measure those oscillations also in the flow with a hot wire anemometer (you can reference the coursework exercise on the hot wire anemometer). Make a sketch of the system with the major components needed to achieve a value of this dominant frequency from the flow. Describe the physical principle how a hot-wire is used to convert the flow signal into an electrical signal. The Strouhal-number of the pillar is Sr=0.2 and the diameter of the pillar is 20cm. What information and value can be gained from it, if you have measured the frequency to be f=20Hz? Sam Journeyman derives income as a professional beach dodge ball player.During the 2017/18 tax year, Sam received the following amounts:Tournament Prizemoney from dodge ball$ 85,000Appearance fees from dodge ball tournaments12,000Cash sponsorship from Aussieboom60,000Jetski provided by Aussieboom as a sponsorship benefit8,000Interest from bank account comprising savings from Prizemoney3,700Director fees from Dodgeball Australia. Sam is a director of Dodgeball Australia.14,500Car provided by Dodgeball Australia as a benefit7,200Required:Calculate Sams taxable professional income for the 2017/18 tax year.Calculate Sam's other taxable income for 2017/18 tax year A function f has the form f(x) = Aekx. Find f if it is known that f(0) = 90 and f(1) = 126. (Hint: ekx = (ek)x.) f(x) = 120(1.9)* X Absorption of Drugs The concentration of a drug in an organ at any time t (in seconds) is given by x(t) = 0.07 + 0.18(1 - e-0.017) where x(t) is measured in milligrams per cubic centimeter (mg/cm). (a) What is the initial concentration of the drug in the organ? (Round your answer to two decimal places.) x(t) = 4.211 X mg/cm (b) What is the concentration of the drug in the organ after 17 sec? (Round your answer to four decimal places.) x(t) = = 9.361 X mg/cm (b) 2n - 2,5n1/3 x5n+ 7v-n X