Answer:
D. Constructive Interference of waves
Explanation:
Rogue waves occur when wave forms arrive suddenly in oceans, thus causing ships to sink within a very short time. The explanation scientists have for this is constructive interference magnified by second-order bound non-linearities. Waves are meant to arrive in a particular direction. During constructive interference, these waves arrive from different directions and in an organized way thus increasing the height of the wave.
This increased height is as a result of the waves not being in a linear form and having sharp peaks. There is also a significant difference between the crests and troughs. Scientists arrived at this explanation for the rogue waves though three experiments conducted in 1997, 2007, and 2015.
What is the current in a 160V circuit if the resistance is 200?
1. A low frequency will have a wavelength?
Answer:
There are many kinds of waves all around us. There are waves in the ocean and in lakes. Did you also know that there are also waves in the air? Sound travels through the air in waves and light is made up of waves of electromagnetic energy.
The wavelength of a wave describes how long the wave is. The distance from the "crest" (top) of one wave to the crest of the next wave is the wavelength. Alternately, we can measure from the "trough" (bottom) of one wave to the trough of the next wave and get the same value for the wavelength.
The frequency of a wave is inversely proportional to its wavelength. That means that waves with a high frequency have a short wavelength, while waves with a low frequency have a longer wavelength.
Light waves have very, very short wavelengths. Red light waves have wavelengths around 700 nanometers (nm), while blue and purple light have even shorter waves with wavelengths around 400 or 500 nm. Some radio waves, another type of electromagnetic radiation, have much longer waves than light, with wavelengths ranging from millimeters to kilometers.
Sound waves traveling through air have wavelengths from millimeters to meters. Low-pitch bass notes that humans can barely hear have huge wavelengths around 17 meters and frequencies around 20 hertz (Hz). Extremely high-pitched sounds that are on the other edge of the range that humans can hear have smaller wavelengths around 17 mm and frequencies around 20 kHz (kilohertz, or thousands of Hertz).
Explanation:
Explanation:
Hope This Helped U
Brqinliest
( I will give a brainliest )
What must be changed, temperature or heat energy, during condensation?
Answer:
The answer is temperature lol
Explanation:
:)
If the angle between two forces increases, the magnitude of their resultant-
A Decreases
C. Remain unchanged
D. Decrease than decreases
A horizontal force of 5.0-N accelerates a 4.0-kg mass, from rest, at a rate of 0.50 m/s^2 in the positive direction. What friction force acts on the mass
Answer:
3N
Explanation:
The frictional force always acts directly opposite to the force of motion, that is it opposes motion. According to the Newton second law of motion:
Sum of horizontal forces = 0
Hence:
5N - 4(0.5) - F = 0
5 - 2 = F
F = 3N
The heat vaporization for methyl alcohol is 1100 kj/kg. It is 2257 KJ/Kg for water. Thus means that______________.
A) these are the amounts of energy to change temperature 1 degree C. required for these substances
B) Methyl alcohol requires less than half as much energy per kg to evaporate than water doe
C) water will get twice as ot as methyl alcohol during vaporization.
d) when alcohol and water evaporate they release 2,2 kj and 2257 kj of energy for every kg respectivly
Please hurry! I'm being timed!
Answer: B) Methyl alcohol requires less than half as much energy per kg to evaporate than water does
Explanation:
Latent heat of vaporization is the amount of heat required to convert 1 kilo gram of liquid into its vapor state without change in its temperature.
Heat of vaporization is more for water than for methyl alcohol which means more heat is required to convert from liquid to vapour form.
As the Heat of vaporization for methyl alcohol (1100) is almost half as that of Heat of vaporization for water (2257) , it means Methyl alcohol requires less than half as much energy per kg to evaporate than water does.
Determine the absolute pressure on the bottom of a swimming pool 30.0 mm by 8.4 mm whose uniform depth is 1.9 mm .
Answer:
=101343.62N/m^2
Explanation:
absolute pressure on the bottom of a swimming pool= atmospheric pressure +( 2 ×ρ ×g)
( 2 ×ρ ×g)= guage pressure
atmospheric pressure= 101325pa
h= height= 1.9 mm = 1.9×10^-3m
ρ = density of water
= 1000kg/m^3
g= acceleration due to gravity= 9.8m/s^2
Then substitute, we have
absolute pressure on the bottom of a swimming pool= 101325+ [0.0019 ×1000 × 9.8)]
=101343.62N/m^2
Hence, the absolute pressure on the bottom of a swimming pool is =101343.62N/m^2
A solid sphere of radius R carries a fixed, uniformly distributed charge q. Obtain an expression for the magnitude of the electric field created by the sphere at a point P outside the sphere.
Answer:
The electric field outside the sphere will be [tex]\dfrac{qr}{4\pi\epsilon_{0}R^3}[/tex].
Explanation:
Given that,
Radius of solid sphere = R
Charge = q
According to figure,
Suppose r is the distance between the point P and center of sphere.
If [tex]\rho[/tex] be the volume charge density,
Then, the charge will be,
[tex]q=\rho\times\dfrac{4}{3}\pi R^3[/tex].....(I)
Consider a Gaussian surface of radius r.
We need to calculate the electric field outside the sphere
Using formula of electric field
[tex]\oint{\vec{E}\cdot \vec{dA}}=\dfrac{Q}{\epsilon_{0}}[/tex]
[tex]E\times4\pi r^2=\dfrac{\rho\dotc \dfrac{4}{3}\pi r^3}{\epsilon_{0}}[/tex]
Put the value from equation (I)
[tex]E\times4\pi r^2=\dfrac{qr^3}{\epsilon_{0}R^3}[/tex]
[tex]E=\dfrac{qr}{4\pi\epsilon_{0}R^3}[/tex]
Hence, The electric field outside the sphere will be [tex]\dfrac{qr}{4\pi\epsilon_{0}R^3}[/tex].
If the angle between the net force and the displacement of an
object is greater than 90 degrees, then which option holds
true?
aThe object stops
b Kinetic energy decreases
C Kinetic energy increases
d Kinetic energy remains the same
Answer: kinetic energy decreases
Explanation:
When the angle between the net force and the displacement of an
object is greater than 90 degree, the Kinetic energy decreases.
The work done by a net force in moving an object over a given distance is given as;
[tex]W = F \times d \ cos(\theta)[/tex]
where;
θ is the angle between the net force and the displacementThe value of cos(θ) decreases from 0 to 180, consequently, the value of work-done will decrease as well.
Based on work-energy theorem, the work done on the object is equal to kinetic energy of the object.
[tex]W = K.E[/tex]
Thus, we can conclude that when the angle increases, the Kinetic energy decreases.
Learn more about kinetic energy here:https://brainly.com/question/10063455
A 3.8kw elective motor powers an inclined conveyer belt. It is designed to lift heavy boxes from the warehouse floor to loading bay. Answer the following:
a)State the energy conversion performed by the motor
b) Calculate the work done by the motor in 14 s
c) If the conveyer belt takes 14 to lift its load vertically by 5.3m, calculate the maximum mass that can carried by the conveyer belt maximum mass that can be carried by the conveyer belt
d) If a small box were to fall off the conveyer belt and hit the floor, calculate the speed at which it would hit the ground if falls from a vertical height of 4.7m
Answer:
See the answer below
Explanation:
To solve this problem we must use the definition of power and work in physics.
a)
The function of the conveyor belt is to carry the boxes from an initial point that is at low altitude to an end point that is at high altitude. In this way the conveyor belt prints a speed to the box to be able to raise it to the required vertical distance.
Since we have a velocity at the beginning and then we place the box at a high position, where then the box remains at rest, we can say that it converts kinetic energy to potential energy.
b)
Power is defined as the relationship of work over time. Therefore we have:
[tex]P=W/t[/tex]
where:
P = power = 3.8 [kW] = 3800 [W]
W = work [J]
t = time = 14 [s]
[tex]W=P*t\\W=3800*14\\W= 53200[J] = 53.2[kJ][/tex]
c)
Since the given time is equal to the given time at Point b, we can use the same work calculated.
We know that work is defined as the product of force by the distance traveled.
[tex]W =F*d[/tex]
So, the force is equal to:
[tex]F=W/d\\F=53200/5.3\\F=10037.73[N][/tex]
Now we know that force is defined as the product of mass by gravitation acceleration.
[tex]F =m*g[/tex]
where:
F = force or weight = 10037.73 [N]
g = gravity acceleration = 9.81 [m/s²]
m = mass [kg]
[tex]m=F/g\\m = 10037.73/9.81\\m = 1023.2 [kg][/tex]
d)
This part can be solved by means of the energy conservation theorem, where the potential energy is transformed into kinetic energy or vice versa.
[tex]E_{pot}=m*g*h = E_{kin}=0.5*m*v^{2}[/tex]
where:
h = elevation = 4.7 [m]
v = velocity [m/s]
[tex]m*g*h=0.5*m*v^{2}\\g*h=0.5*v^{2} \\v=\sqrt{\frac{g*h}{0.5} } \\v=\sqrt{\frac{9.81*4.7}{0.5} } \\v = 9.6 [m/s][/tex]
A particular inductor is connected to a circuit where it experiences a change in current of 0.8 amps every 0.10 sec. If the inductor has a self-inductance of 2.0 V, what is the inductance
Answer:
0.4
Explanation:
Given that a particular inductor is connected to a circuit where it experiences a change in current of 0.8 amps every 0.10 sec. If the inductor has a self-inductance of 2.0 V, what is the inductance
Using the power formula
P = IV
Substitute all the parameters
P = 0.8 × 2
P = 1.6 W
But P = I^2 R
Substitute power and current
1.6 = 0.8^2 R
R = 1.6 / 0.64
R = 2.5 ohms
Inductance = reciprocal of resistance
Inductance = 1 / 2.5
Inductance = 0.4
Optimus Prime is flying straight up at 24 m/s when he accidentally drops his mega-ray blaster and it falls 94 m to the ground below. Calculate how long it takes for his mega-ray blaster to hit the ground.
Answer:
The time it will take the mega-ray blaster to hit the ground is 2.57 s.
Explanation:
Given;
initial velocity of Optimus Prime, u = 24 m/s
height of fall of the mega-ray blaster, h = 94 m
The time of fall of the mega-ray blaster is calculated using the following kinematic equation;
[tex]h = ut + \frac{1}{2}gt^2\\\\94 = 24t + \frac{1}{2}(9.8)t^2\\\\94 = 24t + 4.9t^2\\\\4.9t^2 +24t -94 = 0\\\\Use \ formula \ method \ to \ solve \ for \ "t"\\\\a = 4.9 , b = 24, c = -94\\\\t = \frac{-b \ +/- \ \sqrt{b^2 -4ac} }{2a} \\\\t = \frac{-24 \ +/- \ \sqrt{(24)^2 -4(-94 \times4.9)} }{2(4.9)} \\\\t = \frac{-24 \ +/- \ \sqrt{2418.4} }{9.8}\\\\t = \frac{-24 \ +/- \ 49.177 }{9.8}\\\\t = \frac{-24 \ +\ 49.177 }{9.8} \ \ or \ \ t = \frac{-24 \ -\ 49.177 }{9.8} \\\\[/tex]
[tex]t = 2.57 \ s \ \ or \ \ t = -7.47 \ s[/tex]
t = 2.57 s
Therefore, the time it will take the mega-ray blaster to hit the ground is 2.57 s.
Two identical plastic cups contain the same amount of water at two different temperatures, as shown to the left. Both cups are placed in a room at 25° Celsius. At the time cups were placed in the room, in which cup do the water molecules have higher average kinetic energy? ( Cup 1 © Cup 2
Answer:
the molecules will begin to move slowly and will turn to ice
Explanation:
hope this was good or not not sure if am right but yeah
Does a basketball, baseball, tennis ball, or marble MOST LIKELY have the smallest volume?
Answer: tennis ball
Explanation:
How will a metal container full of hot water in vaccum lose heat?
let's say you hypothetically ran over someone with your car, and they are now under your car in between the front wheels and the back wheels, right, and they're stuck as in can't breathe type stuck, right, do you keep driving so they can breathe or do you let them chill under your car?
just curious...
question: is this actually hypothetical?
Explanation:
also just leave the car there go get some McDonald's or sum and come back and if they're still breathing then go ahead and move the car .
Answer:
the same thing the last guy said
The least count of stopwatch is 0.2s.The time of 20 oscillations of a pendulum was measured to be 25s.Find the percentage error in the measurement of time
Answer:
0.8%
Explanation:
We are given;
Number of oscillations; n = 20
Time taken; t = 25 s
Formula for period of oscillation;
T = t/n = 25/20 = 1.25 s
We are told that the least count is 0.2 s. Thus, error is; ΔT = 0.2 s
percentage error in the measurement of time is given by;
(0.2/(20 × 1.25)) × 100% = 0.8%
An inductor with an inductance of .5 henrys (H) is to be connected to a 60 Hz circuit. What will the inductive reactance (X L) be
Answer:
1885.2 ohms
Explanation:
Step one:
given data
L=5H
f=60Hz
Required
The inductive reactance of the inductor
Step two:
Applying the expression
XL= 2πfL
substitute
XL=2*3.142*60*5
XL=1885.2 ohms
Help! Help!
___ are a primary way to discourage drinking and driving.
A. High prices for alcohol
B. Scare tactics
C. Laws
Answer:
Laws
Explanation:
Laws are a primary way discourage drinking and driving
A primary way to discourage drinking and driving is Law.
What is drinking and driving?The person who takes in alcohol and then drives on the road. This is strictly prohibited.
Laws against the 'drinking and driving' will make people get scared of getting charged or sentenced to jail for some years. Lot of accidents have caused when there were no laws against the action.
Thus, Laws are a primary way to discourage drinking and driving.
Learn more about drinking and driving.
https://brainly.com/question/11317786
#SPJ2
Define friction. Prove that tangent of angle of friction is equal to coefficient
of friction.
Answer:
Friction is the force that opposes movement between moving objects.
The angle at which one object starts to slip on the other is directly related to the coefficient. When the two objects are horizontal there is no frictional force. So, the coefficient of static friction is equal to the tangent of the angle at which the objects slide. A similar method can be used to measure μk.
Explanation:
Answer:
brainliest plsssssss
Explanation:
The resistance that one surface or object encounters when moving over another
Which type of telescope is best used to detect distant planets?
Select the correct answer.
Which of these factors will increase the speed of a sound wave in the air?
A. slowing down the movement of particles in the air
B. raising the temperature of the air
C. removing particles form the air
D. decreasing the kinetic energy of the air
E. stopping particle collisions in the air
Answer:
B
Explanation:
But molecules at a higher temperature have more energy.
Answer: B. Raising the temperature of the air
The plate area is doubled, and the plate separation is reduced to half its initial separation. What is the new charge on the negative plate
Answer:
Q = 4 Q₀
Explanation:
This is an exercise on capacitors, where the capacitance is
C = [tex]\epsilon_{o} \ \frac{A}{d}[/tex]
if we apply the given conditions
C = \epsilon_{o} \ \frac{2A}{0.5d}
C = 4 \epsilon_{o} \ \frac{A}{d}
let's call the capacitance Co with the initial values
C₀ = \epsilon_{o} \ \frac{A}{d}
C = 4 C₀
The charge on each plate of a capacitor is
Q = C ΔV
If the potential difference is maintained, the new charge is
Q = 4 C₀ ΔV
let's call
Q₀ = C₀ ΔV
we substitute
Q = 4 Q₀
please help me!!!!!!!!!!!!!!!
Answer:
3
Explanation:
i did it
two cars with initial speed 2v and v, lock their brakes and skid to a stop. what is the ratio of the distance travelled
Answer:
4:1
Explanation:
Given that the initial speed of the first car, u = 2v while the initial speed of the second car, u = v. To find the distance travelled, we are going to apply one of the equations of motion. The equation chosen is
v² = u² - 2as, where
s = the distance needed
a = acceleration due to gravity
u = initial velocity which is v & 2v
v = final velocity which is 0
For the first car with initial velocity, 2v, on substituting into the equation, we have
v² = u² - 2as(1)
0 = 4v - 2as(1)
4v = 2as(1)
2v = as(1), making s(1) subject of formula we have
s(1) = 2v/a
Taking the second car, we have u = v
v² = u² - 2as(2)
0 = v - 2as(2)
v = 2as(2), making s(2) subject of formula, we have
s(2) = v/2a
Not, ratio of s1 : s2 =
2v/a : v/2a
s1/s2 = 2v/a ÷ v/2a
s1/s2 = 2v/a * 2a/v
s1/s2 = 4av/av
s1/s2 = 4/1
Therefore, the ratio of the first car to the second car is 4:1
Please leave a like if it helped you
A satellite of mass m orbits a moon of mass M in uniform circular motion with a constant tangential speed of v. The gravitational field strength at a distance R from the center of moon is gR. The satellite is moved to a new circular orbit that is 2R from the center of the moon. What is the gravitational field strength of the moon at this new distance
The satellite is moved to a new circular orbit that is 2R from the center of the moon, then the gravitational field strength of the moon at this new distance would be one-fourth of the initial gravitational field.
What is gravity?It can be defined as the force by which a body attracts another body toward its center as the result of the gravitational pull of one body and another.
As given in the problem A satellite of mass m orbits a moon of mass M in a uniform circular motion with a constant tangential speed of v. The gravitational field strength at a distance R from the center of the moon is gR. The satellite is moved to a new circular orbit that is 2R from the center of the moon.
The gravitational field strength is inversely proportional to the square of the distance from the center of the planet.
Thus, the gravitational field strength of the moon at this new distance would be one-fourth of the initial gravitational field.
To learn more about gravity here, refer to the link given below ;
brainly.com/question/4014727
#SPJ1
Two hockey pucks with mass 0.1 kg slide across the ice and collide. Before
the collision, puck 1 is going 15 m/s to the east and puck 2 is going 12 m/s to
the west. After the collision, puck 2 is going 15 m/s to the east. What is the
velocity of puck 1?
Answer:
Puck 1 = 12 m/s
Explanation:
Conservation of energy
KE_1a + KE_2a = KE_1b + KE_2b
(1/2)(0.1kg)(15m/s)^2 + (1/2)(0.1kg)(12m/s)^2 = (1/2)(0.1kg)(V)^2 + (1/2)(0.1kg)(15m/s)^2
V = 12m/s
Answer:
12 m/s west
Explanation:
just did it
a 45 kg boy sits on a horse on a carousel 5.0 m from the center of the circle. he makes a revolution every 8.0 s.
calculate his speed.
what is centripetal force acting on the boy?
For every complete revolution the boy makes around the center of the carousel, he travels a distance of 2π (5.0 m) = 10π m, which gives a linear speed of
v = (10π m) / (8.0 s) ≈ 3.927 m/s
Then his centripetal acceleration would be
a = v ² / (5.0 m) ≈ 3.084 m/s²
so that the centripetal force exerted on him has magnitude
F = (45 kg) a ≈ 138.791 N ≈ 140 N
(rounded to 2 significant digits)
A(n) 636 kg elevator starts from rest. It moves upward for 4.5 s with a constant acceleration until it reaches its cruising speed of 2.05 m/s. The acceleration of gravity is 9.8 m/s 2 . Find the average power delivered by the elevator motor during this period. Answer in units of kW.
Answer:
The average power delivered by the elevator motor during this period is 6.686 kW.
Explanation:
Given;
mass of the elevator, m = 636 kg
initial speed of the elevator, u = 0
time of motion, t = 4.5 s
final speed of the elevator, v = 2.05 m/s
The upward force of the elevator is calculated as;
F = m(a + g)
where;
m is mass of the elevator
a is the constant acceleration of the elevator
g is acceleration due to gravity = 9.8 m/s²
[tex]a = \frac{v-u}{t} \\\\a = \frac{2.05 -0}{4.5} \\\\a = 0.456 \ m/s^2[/tex]
F = (636)(0.456 + 9.8)
F = (636)(10.256)
F = 6522.816 N
The average power delivered by the elevator is calculated as;
[tex]P_{avg} = \frac{1}{2} (Fv)\\\\P_{avg} = \frac{1}{2} (6522.816 \ \times \ 2.05)\\\\P_{avg} = 6685.89 \ W\\\\P_{avg} = 6.68589 \ kW\\\\P_{avg} = 6.686 \ k W[/tex]
Therefore, the average power delivered by the elevator motor during this period is 6.686 kW.
the maximum displacement of an oscillatory motion is A=0.49m. determine the position x at which the kinetic energy of the particle is half it's elastic potential energy? (if K.E = U/2 __ x = ?)
Answer:0.4 m
Explanation:
Given
Maximum displacement A=0.49
The sum of kinetic and elastic potential energy is [tex]\frac{1}{2}kA^2[/tex]
where k=spring constant
U+K.E.=[tex]\frac{1}{2}kA^2[/tex]
when K.E.=U/2
K.E.=kinetic energy
U=Elastic potential Energy
[tex]\rightarrow \ U+\frac{U}{2}=\frac{1}{2}KA^2\\\rightarrow \ \frac{3U}{2}=\frac{1}{2}KA^2\\\rightarrow \ U=\frac{1}{3}KA^2\\\rightarrow \ \frac{Kx^2}{2}=\frac{1}{3}KA^2\\\\x=\sqrt{\frac{2}{3}}A\\x=0.4\ m[/tex]