Answer:
- the expected value is 8
- the standard deviation is 2.8284
Explanation:
Given the data in the question;
The model N(t), the number of planets found up to time t, as a poisson process,
∴ N(t) has distribution of poisson distribution with parameter (λt)
so
the mean is;
λ = 1 every month = 1/3 per month
E[N(t)] = λt
E[N(t)] = (1/3)(24)
E[N(t)] = 8
Therefore, the expected value is 8
For poisson process, Variance and mean are the same,
Var[N(t)] = Var[N(24)]
Var[N(t)] = E[N(24)]
Var[N(t)] = 8
so the standard deviation will be;
σ[N(24)] = √(Var[N(t)] )
σ[N(24)] = √(8 )
σ[N(24)] = 2.8284
Therefore, the standard deviation is 2.8284
Question 7 of 11
>
A 1655 kg car drives down the highway. If the car has a momentum of 61250 kg. m/s, what is the velocity of the car?
Answer:
velocity = 37.01 m/s
Explanation:
momentum = mass * velocity
61250 = 1655 * x
x = 61250 / 1655
x = 37.0090634441
A go-cart is traveling at a rate of 25 m/sec for 20 seconds. How far will the go cart travel?
Answer:
Distance travel by go-cart = 500 meter
Explanation:
Given:
Speed of go cart = 25 m/s
Time travel = 20 seconds
Find:
Distance travel by go-cart
Computation:
Distance = Speed x time
Distance travel by go-cart = Speed of go cart x Time travel
Distance travel by go-cart = 25 x 20
Distance travel by go-cart = 500 meter
The kinetic energy and the potential energy of the cannonball is constantly ________ as it travels through the air.
A. Changing
B. Increasing
C. Constant
D. Decreasing
Answer:
C. Constant
Explanation:
The total energy of the cannonball remains constant as it travels through the air.
Answer:
Explanation:
hi my name is Ava
The liquid emerges into a vertical jet as it drains from the container, with the velocity profile in the jet remaining uniform. The outlet of the container is located 2.0 m above ground, and the radius of the emerging liquid jet changes with vertical distance from the bottom of the container as it accelerates under the action of gravity. Neglecting viscous losses and surface tension effects in the liquid jet, what is the velocity of the water jet as it strikes the ground when the container begins to drain
Answer:
6.26 m/s
Explanation:
Since we are neglecting viscous losses and surface tension effects in the liquid jet, by conservation of energy, the potential energy loss of the jet = kinetic energy gain of the jet
So, mgh = 1/2mv² where m = mass of water in jet, g = acceleration due to gravity = 9.8 m/s², h = height of outlet = 2.0 mand v = velocity of liquid jet
So, mgh = 1/2mv²
gh = 1/2v²
v² = 2gh
v = √(2gh)
v = √(2 × 9.8 m/s² × 2.0 m)
v = √(39.2 m²/s²)
v = 6.26 m/s
One end of a meter stick is pinned to a table, so the stick can rotate freely in a plane parallel to the tabletop. Two forces, both parallel to the tabletop, are applied to the stick in such a way that the net torque is zero. The first force has a magnitude of 2.00 N and is applied perpendicular to the length of the stick at the free end. The second force has a magnitude of 6.00 N and acts at a 42.9o angle with respect to the length of the stick. Where along the stick is the 6.00-N force applied? Express this distance with respect to the end of the stick that is pinned.
Answer:
x = 0.455 L
Explanation:
For this exercise we must use the rotational equilibrium condition
Σ τ = 0
it has two forces, the first is perpendicular to the rod, so its stub is
τ₁ = F₁ L
the second force is applied with an angle, so we can use trigonometry to find its components
sin θ = F_parallel / F₂
cos θ = F_perpendicular / F₂
F_parallel = F₂ sin θ
F _perpendicular = F₂ cos θ
torque is
τ₂ = F_perpendicular x + F_parallel 0
the parallel force is on the rod therefore its distance is zero
we apply the equilibrium equation
τ₁ - τ₂ = 0
F₁ L = F₂ cos θ x
x = [tex]\frac{L}{cos \theta} \ \frac{F_1}{F_2}[/tex]
let's calculate
x = [tex]\frac{L}{cos \ 42.9} \ \frac{2.00}{6.00}[/tex]
x = 0.455 L
2.- a person weighing 70 kg travels at 2m / s. What is the value of his kinetic energy?
Answer:18 watts
Explanation:i just got this question trust me
\
In an experiment, a disk is set into motion such that it rotates with a constant angular speed. As the disk spins, a small sphere of clay is dropped onto the disk, and the sphere sticks to the disk. All frictional forces are negligible. What would happened to the angular momentum and the total kinetic energy of the disk-sphere system immediately before and after the collision?
Answer:
L₀ = L_f , K_f < K₀
Explanation:
For this exercise we start as the angular momentum, with the friction force they are negligible and if we define the system as formed by the disk and the clay sphere, the forces during the collision are internal and therefore the angular momentum is conserved.
This means that the angular momentum before and after the collision changes.
Initial instant. Before the crash
L₀ = I₀ w₀
Final moment. Right after the crash
L_f = (I₀ + mr²) w
we treat the clay sphere as a point particle
how the angular momentum is conserved
L₀ = L_f
I₀ w₀ = (I₀ + mr²) w
w = [tex]\frac{I_o}{I_o + m r^2}[/tex] w₀
having the angular velocities we can calculate the kinetic energy
starting point. Before the crash
K₀ = ½ I₀ w₀²
final point. After the crash
K_f = ½ (I₀ + mr²) w²
sustitute
K_f = ½ (I₀ + mr²) ( [tex]\frac{I_o}{I_o + m r^2}[/tex] w₀)²
Kf = ½ [tex]\frac{I_o^2}{ I_o + m r^2}[/tex] w₀²
we look for the relationship between the kinetic energy
[tex]\frac{K_f}{K_o}[/tex]= [tex]\frac{I_o}{I_o + m r^2}[/tex]
[tex]\frac{K_f}{K_o } < 1[/tex]
K_f < K₀
we see that the kinetic energy is not constant in the process, this implies that part of the energy is transformed into potential energy during the collision
The following statements address the science behind the pulley system illustrated:
A. The pulleys increase the entropy of the system.
B. The force applied to the rope is less than the force needed to lift the object.
C. The pulleys help generate as much energy as possible.
D. The pulleys multiply energy input, resulting in more energy output.
E. The pulleys generate no thermal energy.
Which of these statements is/are true?
i. Statements A and B
ii. Statements D and E
iii. Only statement C
iv. All of the statements
Answer:
i. Statements A and B
Explanation:
Sana nakatulong
. Indiana Jones needs to ascend a 10-m-high building. There is a large hose filled with pressurized water hanging down from the building top. He builds a square platform and mounts four 4-cm-diameter nozzles pointing down at each corner. By connecting hose branches, a water jet with a velocity, u, can be produced from each nozzle. Jones, the platform, and the nozzles have a combined mass of 150 kg. Determine the minimum water jet velocity, u (m/s), needed to raise the system.
Answer:
u = 14 m / s
Explanation:
For this exercise let's use conservation of energy
starting point. On the floor just when u speeding out
Em₀ = K = ½ m v²
final point. When on top of the building, no speed
Em_f = U = m g h
energy is conserved
Em₀ = Em_f
½ m v² = m g h
v = u
u = [tex]\sqrt{2 g h}[/tex]
u= [tex]\sqrt{2 \ 9.8 \ 10}[/tex]
u = 14 m / s
Which particle needs to be added to this equation to show that the total numbers of neutrons and protons are not changed by the reaction? MARKLING BRAINLIEST 70 points must be correct!
Answer:
C.
Explanation:
Answer:A
Explanation:ap3x
HELP PLEASEEE it’s due soon
Answer:
254.982J
Explanation:
mass = 130kg
gravity = 9.807m/s^2
height = 0.200m
Answer:
potential energy = 254.8 jouleExplanation:
mass (m) = 130 kg
height (h) = 0.200 m
(g) = 9.8
potential energy = m×g×h
= 130×0.200×9.8
= 254.8 joule
I need help with this review question.
Answer:
The acceleration of the football is greatest
Explanation:
The more mass the more acceleration
the higher the objects " ? ", the more kinetic energy
true or false
The Total electric potential due to two or more charges is equal to the algebraic sum of the potentials due to the individual charges.
Answer:
i guess the answer is false
b. Calculate the kinetic energy of the car for group A.
Answer: Kinectic Energy (KE) is equal to half of an object's mass (1/2*m) multiplied by the velocity.
Explanation: If an object with a mass of 10 kg (m=10 kg) is moving at a velocity of 5 meters per second (v=5 m/s), the kinetic energy is equal to 125 Joules, or (1/2* 10 kg) * 5 m/s^2.
a 4.5 Hz wave has a wavelength of 0.8m. what is the speed
0.18 m/s
5.6m/s
5.3m/s
3.6m/s
Answer:
Explanation
if 400g is 1kg find the ratio in the simplest form
2:5
Explanation:
400g : 1kg
400g: 1000g
4 : 10
2 : 5
here is a clever kitchen gadget for drying lettuce leaves after you wash them. It consists of a cylindrical container mounted so that it can be rotated about its axis by turning a hand crank. The outer wall of the cylinder is perforated with small holes. You put the wet leaves in the container and turn the crank to spin off the water. The radius of the container is 10.7 cm. When the cylinder is rotating at 1.65 revolutions per second, what is the magnitude of the centripetal acceleration at the outer wall
Answer:
11.5 m/s²
Explanation:
The centripetal acceleration, a = rω² where r = radius of cylinder = 10.7 cm = 0.107 m and ω = angular speed = 2πN where N = number of revolutions per second = 1.65 rev/s
So, a = rω²
a = r(2πN)²
a = 4π²rN²
substituting the values of the variables into the equation, we have
a = 4π²rN²
a = 4π²(0.107 m)(1.65 rev/s)²
a = 4π²(0.107 m)(2.7225 rev²/s)²
a = 4π² × 0.2913075 mrev²/s)²
a = 11.5 m/s²
An astronaut who is repairing the outside of her spaceship accidentally pushes away a 92.9 cm long steel rod, which flies off at 12.5 m/s , never to be seen again. As it happens, the rod is oriented perpendicularly to the magnetic field in that region of space. The rod is moving perpendicularly to its length as well as to the direction of the magnetic field. The magnetic field strength there is 6.23 mT . What is the magnitude of the EMF, in millivolts, induced between the ends of the rod
Answer:
V = 0.0723 volts = 72.3 milivolts
Explanation:
The emf induced in the rod is the motional emf due to the magnetic field. This motional emf can be calculated by the following formula:
[tex]EMF = V = vBl Sin\theta[/tex]
where,
V = Motional EMF = ?
v = speed of rod = 12.5 m/s
B = Magnetic Field = 6.23 mT = 0.00623 T
l = Length of rod = 92.9 cm = 0.929 m
θ = angle between v and B = 90°
Therefore,
[tex]V = (12.5\ m/s)(0.00623\ T)(0.929\ m)Sin\ 90^o\\[/tex]
V = 0.0723 volts = 72.3 milivolts
Will give brainliest!
Describe how heat is moving in the image and label each as Radiation, Conduction, or Convection.
Radiation / Conduction / Convection
Answer:
well in the pot there is conventional heat, the pot itself is giving off conductable heat, and the radiational heat is coming from the stove.
A 85-W lamp is connected to 100 V. What is the resistance of the lamp?
a disk of a radius 50 cm rotates at a constant rate of 100 rpm. what distance in meters will a point on the outside rim travel during 30 seconds of rotation?
Each minute, the disk completes 100 revolutions, so a point on the rim traverses a distance of 100 times the circumference of the disk and would have a linear speed of
100 rev/min
= (100 rev/min) × (2π × 50 cm/rev) × (1/100 m/cm) × (1/60 min/s)
= 5π/3 m/s ≈ 5.236 m/s
Then after 30 s of rotation, the point would have traveled a distance of
(5π/3 m/s) × (30 s) = 50π m ≈ 157.08 m
To apply Problem-Solving Strategy 12.2 Sound intensity. You are trying to overhear a most interesting conversation, but from your distance of 10.0 m , it sounds like only an average whisper of 20.0 dB . So you decide to move closer to give the conversation a sound level of 60.0 dB instead. How close should you come
Answer:
r₂ = 0.316 m
Explanation:
The sound level is expressed in decibels, therefore let's find the intensity for the new location
β = 10 log [tex]\frac{I}{I_o}[/tex]
let's write this expression for our case
β₁ = 10 log \frac{I_1}{I_o}
β₂ = 10 log \frac{I_2}{I_o}
β₂ -β₁ = 10 ( [tex]log \frac{I_2}{I_o} - log \frac{I_1}{I_o}[/tex])
β₂ - β₁ = 10 [tex]log \frac{I_2}{I_1}[/tex]
log \frac{I_2}{I_1} = [tex]\frac{60 - 20}{10}[/tex] = 3
[tex]\frac{I_2}{I_1}[/tex] = 10³
I₂ = 10³ I₁
having the relationship between the intensities, we can use the definition of intensity which is the power per unit area
I = P / A
P = I A
the area is of a sphere
A = 4π r²
the power of the sound does not change, so we can write it for the two points
P = I₁ A₁ = I₂ A₂
I₁ r₁² = I₂ r₂²
we substitute the ratio of intensities
I₁ r₁² = (10³ I₁ ) r₂²
r₁² = 10³ r₂²
r₂ = r₁ / √10³
we calculate
r₂ = [tex]\frac{10.0}{\sqrt{10^3} }[/tex]
r₂ = 0.316 m
How does the force of gravity and the force of earth contribute to africa's poverty?
Answer:
The force of gravity is not the same as being on the earth. when your on the earth there no gravitational pull its all up to the air
Explanation:
No explanation
What is the unit of measurement of mass and weight?
Answer:
kilogram
In the International System of Units (SI), the kilogram is the basic unit of mass, and the newton is the basic unit of force. The non-SI kilogram-force is also a unit of force typically used in the measure of weight.
What voltage would be measured across the 15 ohm resistor?
A)
2.5 volts
B)
5.0 volts
C)
7.5 volts
D)
10 volts
Answer:
7.5 volts
Explanation:
I did it on USA Testprep
why is potassium and sodium considered as reactive metals?
Answer:
because they are found freely in nature uncombined so they are highly reactive with other elements
An organ pipe open at both ends has a length of 0.80 m. If the velocity of sound in air is 340 m/s, what is the frequency of the second harmonic of this pipe
Answer:
the frequency of the second harmonic of the pipe is 425 Hz
Explanation:
Given;
length of the open pipe, L = 0.8 m
velocity of sound, v = 340 m/s
The wavelength of the second harmonic is calculated as follows;
L = A ---> N + N--->N + N--->A
where;
L is the length of the pipe in the second harmonic
A represents antinode of the wave
N represents the node of the wave
[tex]L = \frac{\lambda}{4} + \frac{\lambda}{2} + \frac{\lambda}{4} \\\\L = \lambda[/tex]
The frequency is calculated as follows;
[tex]F_1 = \frac{V}{\lambda} = \frac{340}{0.8} = 425 \ Hz[/tex]
Therefore, the frequency of the second harmonic of the pipe is 425 Hz.
The frequency of the second harmonic of the pipe is 425 Hz.
What is the frequency?Frequency is the number of oscillations per second in the sinusoidal wave.
Given is length of the open pipe, L = 0.8 m, and velocity of sound, v = 340 m/s
The wavelength of the second harmonic is represented as
L = A → N + N→N + N→A
where, L is the length of the pipe in the second harmonic, A represents antinode of the wave, N represents the node of the wave
Length = λ/4 +λ/2 +λ/4
Length = λ
The frequency is calculated
frequency = speed of light / wavelength
Put the values, we get
f = 340/0.80
f = 425 Hz
Therefore, the frequency of the second harmonic of the pipe is 425 Hz.
Learn more about frequency.
https://brainly.com/question/25867078
#SPJ5
A +0.0129 C charge feels a 4110 N
force from a -0.00707 C charge. How
far apart are they?
[?] m
Answer:
r = 14.13 m
Explanation:
Given that,
Charge 1, q₁ = +0.0129 C
Charge 2, q₂ = -0.00707 C
The force between charges, F = 4110 N
We need to find the distance between charges. The formula for the force between charges is given by :
[tex]F=k\dfrac{q_1q_2}{r^2}[/tex]
Where
r is the distance between charges
So,
[tex]r=\sqrt{\dfrac{kq_1q_2}{F}} \\\\r=\sqrt{\dfrac{9\times 10^9\times 0.0129 \times 0.00707 }{4110 }} \\\\r=14.13\ m[/tex]
So, the distance between charges is equal to 14.13 m.
Answer:
14.13 m
Explanation:
acellus
When jeremiah stands in a swimming pool and looks at hid feet, his legs appear to be bent. Which is the term for this phenomenon?
A. Diffraction
B. Dispersion
C. Reflection
D. Refraction