Ammonium nitrate decomposes explosively upon heating according to the following balanced equation:
2NH4NO3(s)→2N2(g)+O2(g)+4H2O(g)
Calculate the total volume of gas (at 120 ∘C and 766 mmHg ) produced by the complete decomposition of 1.44 kg of ammonium nitrate.

Answers

Answer 1

Answer:

PV=nRT0.988×V=76.56×0.0821×394V=2506.6 L

Explanation:

• amount of ammonium nitrate present is m = 1.75 kg =  1750g.

• corruption of ammonium nitrate upon heating

Reaction                                     2NH4NO3( s) ⟶ 2N2( g) O2( g) 4H2O( g)

Molar Mass M                                80 g/mol

StoichiometricCoefficient( n)             2                     2            1           4

Stoichiometric Mass m = ( n × M)   ( 2 × 80) g =  160 g

From the stoichiometric mass we have 160 g of ammonium nitrate produces( 2 1 4) intelligencers ie 7 moles of gas.

thus we have number of intelligencers of feasts evolved from 1750 g of ammonium nitrate equal to

n = 7/160 × 1750 moles= 76.56 moles

• Pressure of the gases are

• P =  751 mmHg = 0.988 atm

Note 1 atm =  760 mmHg.

• Temperature of the gases are

T =  121oC =  394 K

Let the volume of feasts produced be V.

From the ideal gas equation we've

PV =  nRT

0.988 × V = 76.56 ×0.0821 × 394

V = 2506.6 L


Related Questions

For each of the following sublevels, give the n and l values and the number of orbitals: n value l value number of orbitals (a) 2s (b) 6f (c) 4s

Answers

Sublevels are specific groups of orbitals that have the same energy level and angular momentum.

(a) The sublevel 2s has an n value of 2 and an l value of 0. It has only one orbital, which can hold a maximum of two electrons.
(b) The sublevel 6f has an n value of 6 and an l value of 3. It has a total of seven orbitals, each of which can hold a maximum of two electrons. Therefore, the total number of electrons that can be accommodated in the 6f sublevel is 14.
(c) The sublevel 4s has an n value of 4 and an l value of 0. It has only one orbital, which can hold a maximum of two electrons. This sublevel is the first to fill in the fourth energy level, and after the 4s sublevel is filled, the electrons start filling the 3d sublevel.
In summary, sublevels are specific groups of orbitals that have the same energy level and angular momentum. The n value indicates the energy level of the sublevel, and the l value corresponds to the angular momentum quantum number. The number of orbitals in a sublevel is given by 2l+1, where l is the value of the angular momentum quantum number.

To know more about angular momentum visit: https://brainly.com/question/30656024

#SPJ11

What is n for the following equation in relating K...
What is n for the following equation in relating Kc to Kp? 2SO2 + O2 <------> 2SO3

Answers

The given equation, the value of "n" is 1.

To determine the value of "n" in the equation relating Kc to Kp for the given reaction:

2SO2 + O2 ⇌ 2SO3

We need to examine the stoichiometry of the reaction. "n" represents the number of moles of gaseous reactants minus the number of moles of gaseous products in the balanced equation.

In this case, we have 3 moles of gaseous reactants (2 moles of SO2 and 1 mole of O2) and 2 moles of gaseous products (2 moles of SO3). Therefore, the value of "n" can be calculated as follows:

n = (moles of gaseous reactants) - (moles of gaseous products)

= (2 moles of SO2 + 1 mole of O2) - (2 moles of SO3)

= 3 - 2

= 1

Therefore, for the given equation, the value of "n" is 1.

To know more about stoichiometry refer here

brainly.com/question/28780091#

#SPJ11

The pH readings for wines vary from 2.1 to 3.1. Find the corresponding range of hydrogen ion concentrations, a.7.94 x 10^-4 ≤ [H+] ≤ 7.94 x 10-3 b.3.1 x 10^-4 ≤ [H+] ≤ 2.1 10-3 c.7.94 x 10-11 ≤ [h+] ≤ 7.94 x 10-10 d.3.1 x 10-11 ≤ [H+] ≤ 2.1 x 10-10 e.None of these

Answers

Hence, option (a) is correct.  the corresponding range of hydrogen ion concentrations, a.7.94 x 10^-4 ≤ [H+] ≤ 7.

The pH readings for wines vary from 2.1 to 3.1. The formula to find the concentration of hydrogen ions in the solution is, $$ pH = - log [H^+] $$Using this formula, we can rearrange it to find the concentration of hydrogen ions, i.e. $$ [H^+] = 10^{-pH} $$Using the given pH range, we get the corresponding range of hydrogen ion concentrations as follows:$$ 10^{-2.1} ≤ [H^+] ≤ 10^{-3.1} $$Solving the above equation, we get, $$ 7.94 × 10^{-4} ≤ [H^+] ≤ 7.94 × 10^{-3} $$Therefore, the corresponding range of hydrogen ion concentrations is a. 7.94 × 10^-4 ≤ [H+] ≤ 7.94 × 10^-3.

To know more about pH  visit:

https://brainly.com/question/28602224

#SPJ11

Glycolysis depends on a continuous supply of: a. NADP b. pyruvate c. NAD+ d. NADH e. H2O

Answers

Glycolysis depends on a continuous supply of:

c. NAD+ (nicotinamide adenine dinucleotide)

During the process of glycolysis, glucose is broken down into pyruvate molecules. In this pathway, NAD+ is converted into its reduced form, NADH, by accepting electrons and hydrogen ions (H+) from certain steps of glycolysis. NADH acts as an electron carrier and plays a crucial role in the subsequent energy-yielding steps of cellular respiration.

The conversion of NAD+ to NADH in glycolysis is an essential step as it helps to maintain the balance of electron and energy flow in the pathway. NADH molecules produced in glycolysis are later used in the electron transport chain to generate ATP during oxidative phosphorylation. In this process, NADH donates its electrons to the respiratory chain, ultimately leading to the production of ATP.

Therefore, a continuous supply of NAD+ is necessary for the glycolytic pathway to continue functioning efficiently, ensuring the production of energy in the form of ATP.

Learn more about glycolysis here, https://brainly.com/question/1966268

#SPJ11

Which apparatus can be used to monitor the rate of this reaction? CH3COCH3 (aq) + I2 (aq) → CH3COCH2I (aq) + H+ (aq) + I- (aq) I. A pH meter II. A gas syringe III. A colorimeter A I and II only B I and III only C II and III only D I, II and III

Answers

The right response is I, II, and III, which is D. Since a pH metre measures the quantity of H+ ions emitted during the reaction, it may be used to track the reaction's progress.

A gas syringe, which measures the volume of gas emitted during the reaction, can also be used to track the pace of the reaction. The concentration of the reactants and products throughout the reaction can also be gauged using a colorimeter.

This is significant because it may be used to estimate the reaction's speed. Therefore, all three apparatus, a pH meter, a gas syringe and a colorimeter can be used to monitor the rate of the reaction CH3COCH3 (aq) + I2 (aq) → CH3COCH2I (aq) + H+ (aq) + I- (aq).

Learn more about  colorimeter  at:

https://brainly.com/question/31446323

#SPJ1

what is the oxidizing agent in this redox reaction? 2al(s) 3h2so4(aq) → al2(so4)3(aq) 3h2(g)

Answers

In the given redox reaction, aluminum (Al) is being oxidized while sulfuric acid (H2SO4) is being reduced. The oxidizing agent is the substance that causes oxidation, which means it accepts electrons from another substance. In this case, the oxidizing agent is sulfuric acid, which accepts electrons from aluminum, causing it to lose electrons and become oxidized.

This is a classic example of a redox reaction, which involves the transfer of electrons between reactants. The term "redox" is derived from the combination of "reduction" and "oxidation," which are the two complementary processes that occur during this type of reaction. In summary, the oxidizing agent in the given redox reaction is sulfuric acid, which accepts electrons from aluminum, causing it to become oxidized.

to know more about redox reaction visit:

https://brainly.com/question/13978139

#SPJ11

What is the pH of a solution prepared by dissolving 0.15 gram of solid CaO (lime) in enough water to make 2.00 L of aqueous Ca (OH)_2 (limewater)? CaO(s) + H_2O(l) rightarrow Ca^2+(aq) + 2 OH^-(aq) A) 2.87 B) 11.13 C) 11.43 D) 2.57

Answers

The correct answer is B) 11.13.

To determine the pH of the solution prepared by dissolving 0.15 grams of solid CaO in enough water to make 2.00 L of aqueous Ca(OH)₂, we need to consider the dissociation of Ca(OH)₂ in water.

The balanced equation for the dissociation of Ca(OH)₂ is:

Ca(OH)₂ → Ca²⁺ + 2OH⁻

Since Ca(OH)₂ dissociates to release two hydroxide ions (OH⁻), the concentration of hydroxide ions in the solution can be calculated using the given amount of CaO.

First, we need to find the number of moles of CaO:

Mass of CaO = 0.15 g

Molar mass of CaO = 56.08 g/mol

Number of moles of CaO = mass / molar mass

                     = 0.15 g / 56.08 g/mol

                     ≈ 0.0027 mol

Since 1 mole of CaO produces 2 moles of OH⁻ ions, the concentration of OH⁻ ions in the solution can be determined:

Concentration of OH⁻ ions = (2 × moles of CaO) / volume of solution

                         = (2 × 0.0027 mol) / 2.00 L

                         = 0.0027 mol / 2.00 L

                         = 0.00135 M

Since we have the concentration of OH⁻ ions, we can use the pOH scale to find the pOH of the solution:

pOH = -log[OH⁻]

   = -log(0.00135)

   ≈ 2.87

Finally, to find the pH of the solution, we can use the relation:

pH + pOH = 14

pH = 14 - pOH

   = 14 - 2.87

   ≈ 11.13

Therefore, the pH of the solution prepared by dissolving 0.15 grams of CaO in enough water to make 2.00 L of aqueous Ca(OH)₂ (limewater) is approximately 11.13.

To know more about hydroxide ions refer here

brainly.com/question/14619642#

#SPJ11

a tank of n2o has a pressure 45.0 psi. what is this pressure in atmosphere?

Answers

To convert from pounds per square inch (psi) to atmospheres (atm), we can use the conversion factor:

1 atm = 14.696 psi

Therefore, to convert 45.0 psi to atm, we divide by 14.696:

45.0 psi ÷ 14.696 psi/atm = 3.062 atm

So the pressure of N2O in atmospheres is 3.062 atm (rounded to three significant figures).

To know more about pounds per square inch refer here

brainly.com/question/24012443#

#SPJ11

Which of the following nuclear reactions requires a high temperature to start and continue?
fusion
b - emision
fission
bombardment
y - emission

Answers

The nuclear reaction that requires a high temperature to start and continue is fusion.

Fusion is a process in which two light atomic nuclei combine to form a heavier nucleus. This reaction is the source of energy in stars, including our Sun. To overcome the electrostatic repulsion between positively charged nuclei and bring them close enough for the strong nuclear force to take effect, extremely high temperatures and pressures are required.

At such high temperatures, like those found in the core of the Sun, hydrogen nuclei (protons) can collide with enough energy to undergo fusion and form helium. The high temperature provides the kinetic energy necessary for the protons to overcome the electrostatic repulsion and come close enough together for the strong nuclear force to bind them.

Fusion reactions require temperatures in the range of millions of degrees Celsius to sustain the high energy required for the fusion process to continue.

Learn more about nuclear reaction  here:

https://brainly.com/question/13315150

#SPJ11

write the chemical equation for the reactions which take place when magnesium hydrogen carbonate is removel from hard water using 1. boiling method 2. sodium carbonate solution

Answers

Boiling method: Magnesium hydrogen carbonate decomposes into magnesium carbonate, water, and carbon dioxide gas.

Sodium carbonate solution: Magnesium hydrogen carbonate reacts with sodium carbonate to form magnesium carbonate, water, and sodium hydrogen carbonate.

Boiling Method:When magnesium hydrogen carbonate is subjected to the boiling method, it decomposes due to the heat. The chemical equation for this reaction is as follows:

Mg(HCO3)2(s) → MgCO3(s) + H2O(g) + CO2(g)

In this equation, magnesium hydrogen carbonate (Mg(HCO3)2) decomposes into magnesium carbonate (MgCO3), water (H2O), and carbon dioxide gas (CO2). This allows the removal of magnesium hydrogen carbonate from the hard water.

Sodium Carbonate Solution:In the presence of sodium carbonate (Na2CO3) solution, magnesium hydrogen carbonate reacts to form magnesium carbonate, water, and sodium hydrogen carbonate. The chemical equation for this reaction is as follows:

Mg(HCO3)2(s) + 2Na2CO3(aq) → MgCO3(s) + H2O(l) + 2NaHCO3(aq)

In this equation, magnesium hydrogen carbonate reacts with sodium carbonate to produce magnesium carbonate (MgCO3), water (H2O), and sodium hydrogen carbonate (NaHCO3). This reaction leads to the removal of magnesium hydrogen carbonate from hard water.

For more questions like Reaction click the link below:

https://brainly.com/question/30086875

#SPJ11

carbonyl compounds have a natural tendencey to undergo tautomerization to its corresponding enol. however, keto form exists as the major tautomer. what is the reasion for this behavior

Answers

The reason for the predominance of the keto form over the enol form in tautomeric equilibrium of carbonyl compounds is primarily due to thermodynamic stability and resonance stabilization.

The keto form, characterized by a carbonyl group (C=O), is more stable than the enol form, which contains a hydroxyl group (-OH) attached to a carbon-carbon double bond. This stability arises from the stronger double bond character of the carbon-oxygen bond in the keto form compared to the carbon-carbon bond in the enol form.

Resonance stabilization also contributes to the preference for the keto form. In the keto form, the lone pair of electrons on the oxygen atom can participate in resonance with the adjacent carbon-oxygen double bond. This delocalization of electrons enhances the stability of the keto form.

On the other hand, the enol form has a higher energy due to the presence of a carbon-carbon double bond and an oxygen-hydrogen single bond, which are generally less stable than the carbon-oxygen double bond in the keto form.

Overall, the thermodynamic stability and resonance stabilization of the keto form make it the more favorable tautomer, leading to its predominance over the enol form in most carbonyl compounds.

Learn more about thermodynamic here:

https://brainly.com/question/30207871

#SPJ11

What is the maximum work that could be obtained from 5.35 g of zinc metal in the following reaction at 25°C?
Zn(s) + Cu2+(aq) ---> Zn2+(aq) + Cu(s)

Answers

The maximum work that could be obtained from 5.35 g of zinc metal is calculated as - 17. 3903 kJ

          Zn(s) + Cu²⁺(aq) ---> Zn²⁺ (aq) + Cu(s)

Δ G ° = Δ G° product - Δ G° reactant

         =   - 147 - 65.52

           =  - 212.52 kJ / mole

molar mass of zinc = 65.38 g/ mole

mole of Zn = [tex]\frac{gram of Zn}{molar mass}[/tex]

                     = 5.35/ 65.38

W = - 212.52 kJ/ mole × 5.35 / 65.38 mole

           =  - 17. 3903 kJ                    

How much is Delta G?

To put it another way, "G" is the change in a system's free energy as it transitions from one initial state (all reactants) to another, final state (all products). The maximum amount of usable energy that can be released (or absorbed) during the transition from the initial to the final state is shown by this value.

What is as molar mass?

"Mass per mole" can be used to describe molar mass. To put it another way, a substance's molar mass is the total mass of all its atoms in one mole's worth. It is quantified in grams per mole.

Learn more about Molar mass:

brainly.com/question/21334167

#SPJ4

an electron is released from rest in a uniform electric field of magnitude 2.43 × 104 n/c. calculate the acceleration of the electron. (ignore gravitation.)

Answers

The acceleration of the electron in the uniform electric field is calculated using the equation

       a = qE/m,

where

q is the charge, E is the electric field magnitude, and m is the mass of the electron.

How to calculate electron acceleration in an electric field?

The acceleration of an electron released from rest in a uniform electric field of magnitude 2.43 × 10⁴N/C

The equation used to calculate the acceleration of the electron is

                  a = qE/m.

The charge of the electron is

           q = 1.6 × 10⁻¹⁹ C.

The magnitude of the electric field is

           E = 2.43 × 10⁴N/C.

The mass of the electron is

           m = 9.11 × 10⁻³¹ kg.

Substituting the given values into the equation, we have

       a = (1.6 × 10⁻¹⁹ C) × (2.43 × 10⁴ N/C) / (9.11 × 10⁻³¹ kg).

Calculating this expression will give us the acceleration of the electron.The units of the acceleration will be meters per second squared (m/s²).The result of the calculation will provide the numerical value of the electron's acceleration in the given electric field.

Learn more about acceleration

brainly.com/question/2303856

#SPJ11

what is a common source of radiation arising from earth

Answers

A common source of radiation arising from Earth is radon gas.

Radon, a radioactive gas found naturally, is generated through the decay of uranium present in soil, rock, and water. This radiation has the potential to accumulate within buildings, posing a health hazard to humans, particularly when inhaled for extended durations.

Radon, an inherent radioactive gas, possesses the potential to induce lung cancer. It is an inert gas, lacking color and odor.

Trace amounts of radon are naturally present in the atmosphere, with outdoor exposure generally posing minimal health risks as it disperses swiftly.

However, the majority of radon exposure occurs indoors, within residences, educational institutions, and workplaces. Upon entering buildings through foundation cracks and other openings, radon becomes trapped indoors.

Fortunately, indoor radon levels can be regulated and mitigated through established, cost-effective techniques.

To learn more about radon gas visit:

https://brainly.com/question/27502302

#SPJ11

which of the following is more highly oxidized than acetaldehyde?
a. ethylene gas b. ethanol c. ethane d. acetic acid e. ethylene

Answers

The correct answer is (d). acetic acid.

In terms of oxidation states, acetaldehyde ([tex]CH_3CHO[/tex]) has a carbon atom bonded to an oxygen atom, giving the carbon a +1 oxidation state. Acetic acid  ([tex]CH_3CHO[/tex]) , on the other hand, has two oxygen atoms bonded to the carbon, resulting in a +2 oxidation state for the carbon. Therefore, acetic acid is more highly oxidized than acetaldehyde.

Let's examine the other options:

a. ethylene gas ([tex]C_2H_4[/tex]) has a carbon-carbon double bond and no oxygen atoms, so it is less oxidized than acetaldehyde.

b. ethanol ([tex]C_2H_5OH[/tex]) has an oxygen atom bonded to one of the carbon atoms, resulting in a +1 oxidation state for the carbon. It is the same level of oxidation as acetaldehyde.

c. ethane ([tex]C_2H_6[/tex]) has no oxygen atoms, so it is less oxidized than acetaldehyde.

e. ethylene ([tex]C_2H_4[/tex]) is the same as option a and is less oxidized than acetaldehyde.

To know more about acetic refer here

https://brainly.com/question/15202177#

#SPJ11

find the binding energy in an atom of 3he which has a mass of 3.016030

Answers

The binding energy in an atom of ³He, which has a mass of 3.016030 atomic mass units (u), is approximately 193.0 MeV.

The binding energy of an atom refers to the energy required to disassemble the nucleus into its constituent nucleons (protons and neutrons). It represents the attractive forces that hold the nucleus together.

Mass of ³He (³He mass) = 3.016030 atomic mass units (u)

Sum of masses of constituents (protons and neutrons) = 2.808920 u

Binding energy (ΔE) = (³He mass) - (Sum of masses of constituents)

ΔE = 3.016030 u - 2.808920 u

ΔE ≈ 0.20711 u

To convert the binding energy from atomic mass units (u) to energy units such as electron volts (eV), we can use the conversion factor:

1 atomic mass unit (u) = 931.5 MeV

So, the binding energy can be calculated as:

Binding energy (ΔE) ≈ 0.20711 u * 931.5 MeV/u

Binding energy (ΔE) ≈ 193.0 MeV

learn more about binding energy here:

https://brainly.com/question/32066931

#SPJ4

how many moles of h2s would we expect to be formed by reaction (b) if 3.50 moles of hno3 reacted completely

Answers

1.75 moles of H₂S reacts with 3.5 moles of HNO₃.

According to the balanced equation, the stoichiometric ratio between HNO₃ and H₂S is 2:1.

2 HNO₃ (aq) + Na₂S (aq) → H₂S (g) + 2 NaNO₃ (aq).

This means that for every 2 moles of HNO₃, 1 mole of H₂S is produced. Therefore, if 3.50 moles of HNO₃ react completely, we can calculate the expected moles of H₂S as follows:

Moles of H₂S

[tex]= \frac {(3.50 moles of HNO_{3})}{(2 moles of HNO3 per 1 mole of H_{2}S)}\\= \frac {3.50 moles}{2}\\= 1.75 moles[/tex]

Hence, we would expect the formation of 1.75 moles of H₂S by the reaction if 3.50 moles of HNO₃ reacted completely.

Learn more about moles here:

https://brainly.com/question/30490905

#SPJ4

The complete question is:

How many moles of H₂S would we expect to be formed by reaction (b) if 3.50 moles of HNO₃ reacted completely. 2 HNO₃ (aq) + Na₂S (aq) → H₂S (g) + 2 NaNO₃ (aq).

Which one of the compounds shown, if either, is a stronger base and why? NH A) ll is a stronger base because the nonbinding electrons on N are not involved in resonance on the aromatic ring. B) I and II are equivalent bases because both have nonbinding electrons that are involved resonance. C) is a stronger base because the nonbonding electrons on N are not involved in resonance in the aromatic ring. D) Il is a stronger base because the nonbinding electrons on N are involved in resonance on the aromatic ring. E) 1 is a stronger base because the nonbonding electrons on N are involved in resonance in the aromatic ring.

Answers

Based on the given options, the correct answer is (C) is a stronger base because the nonbonding electrons on N are not involved in resonance in the aromatic ring.

The basicity of a compound can be influenced by several factors, including the presence of electron-donating or withdrawing groups and the involvement of nonbonding electrons in resonance.

In this case, option (C) refers to a compound where the nonbonding electrons on nitrogen (N) are not involved in resonance in the aromatic ring. Resonance refers to the delocalization of electrons in a molecule, which can stabilize or destabilize the molecule.

The involvement of nonbonding electrons in resonance reduces the availability of these electrons for donation and thus decreases the basicity of the compound.

Therefore, in option (C), since the nonbonding electrons on N are not involved in resonance, the compound is a stronger base compared to the other options.

Options (A), (B), (D), and (E) suggest that the nonbonding electrons on N are involved in resonance, which would decrease the basicity of the compound.

To know more about  refer nonbonding here

brainly.com/question/30896787#

#SPJ11

Calculate the mass (in mg) if a sample of your unknown liquid from part C has a volume of 0.0825 fl. oz. Use the density you calculated, and use dimensional analysis for all steps (not algebra).

Answers

The mass of the sample is approximately 2305.342 mg FOR the mass (in mg) if a sample of your unknown liquid from part C has a volume of 0.0825 fl.

To calculate the mass of the sample in milligrams (mg), we can use dimensional analysis with the given volume and density.

Given:

Volume = 0.0825 fl. oz.

First, we need to convert the volume from fluid ounces to milliliters (ml), and then use the density to find the mass.

Conversion:

1 fl. oz. = 29.5735 ml (approximately)

Converting the given volume:

Volume = 0.0825 fl. oz. * 29.5735 ml/fl. oz.

Volume ≈ 2.437 ml

Next, we use the density to find the mass:

Density = 0.946 g/ml (from part C)

Mass = Volume * Density

Mass = 2.437 ml * 0.946 g/ml

Finally, we convert the mass from grams to milligrams:

1 g = 1000 mg

Converting the mass:

Mass = 2.437 ml * 0.946 g/ml * 1000 mg/g

Mass ≈ 2305.342 mg.

Learn more about mass here:

https://brainly.com/question/11954533

#SPJ11

1. calculate the equilibrium constant for the following reaction at 25 oc, given that δgo (f) of o3 (g) is 163.4 kj/mol. 2o3(g) → 3o2(g)

Answers

The equilibrium constant (K) for the given reaction at 25°C is approximately 5.18 × 10^(-31).

To calculate the equilibrium constant (K) for the given reaction at 25°C, we can use the relationship between the standard Gibbs free energy change (ΔG°) and the equilibrium constant.

The standard Gibbs free energy change (ΔG°) is related to the equilibrium constant (K) through the equation:

ΔG° = -RT ln(K)

Where:

ΔG° is the standard Gibbs free energy change (in J/mol)

R is the gas constant (8.314 J/(mol·K))

T is the temperature in Kelvin

K is the equilibrium constant

First, we need to convert the given value of ΔG° from kJ/mol to J/mol:

ΔG° = 163.4 kJ/mol = 163.4 × 10^3 J/mol

Now we can substitute the values into the equation and solve for K:

163.4 × 10^3 J/mol = - (8.314 J/(mol·K)) * (25 + 273) K * ln(K)

Simplifying the equation:

163.4 × 10^3 J/mol = - (8.314 J/(mol·K)) * (298 K) * ln(K)

Dividing both sides of the equation by - (8.314 J/(mol·K)) * (298 K):

ln(K) = (163.4 × 10^3 J/mol) / - (8.314 J/(mol·K)) / (298 K)

ln(K) ≈ - 69.93

Taking the exponential of both sides to solve for K:

K ≈ e^(-69.93)

K ≈ 5.18 × 10^(-31)

Therefore, the equilibrium constant (K) for the given reaction at 25°C is approximately 5.18 × 10^(-31).

Learn more about equilibrium constant here:

https://brainly.com/question/30620209

#SPJ11

If the heat of combustion of hydrogen gas is −285.8kJmol, how many grams of hydrogen must combust in order to release 1.2×103kJ of heat? Your answer should have two significant figures.

Answers

To determine the mass of hydrogen gas that must combust in order to release 1.2 × 10³ kJ of heat, we need to use the given heat of combustion of hydrogen gas.

The heat of combustion of hydrogen gas is given as -285.8 kJ/mol, indicating that 1 mole of hydrogen gas releases 285.8 kJ of heat.

We can set up a proportion to find the number of moles of hydrogen gas required to release 1.2 × 10³ kJ of heat:

(-285.8 kJ/mol) / (1 mol) = (1.2 × 10³ kJ) / (x mol)

Cross-multiplying the equation:

-285.8 kJ * x mol = 1.2 × 10³ kJ * 1 mol

Simplifying:

-285.8 * x = 1.2 × 10³

Dividing both sides by -285.8:

x = (1.2 × 10³) / (-285.8)

x ≈ -4.19 mol

Since we can't have a negative number of moles, we take the absolute value of the result:

x ≈ 4.19 mol

To convert moles to grams, we need to multiply by the molar mass of hydrogen (H₂), which is approximately 2.02 g/mol:

Mass of hydrogen = 4.19 mol * 2.02 g/mol

                ≈ 8.45 g

Therefore, approximately 8.45 grams of hydrogen gas must combust to release 1.2 × 10³ kJ of heat.

To know more about hydrogen refer here

brainly.com/question/30623765#

#SPJ11

write an equation to show that acetic acid , ch3cooh , behaves as an acid in water. h2o

Answers

The equation to show that acetic acid (CH3COOH) behaves as an acid in water (H2O) is as follows:

CH3COOH + H2O ⇌ CH3COO- + H3O+

In this equation, acetic acid (CH3COOH) donates a proton (H+) to water (H2O), resulting in the formation of the acetate ion (CH3COO-) and the hydronium ion (H3O+).

The transfer of the proton from acetic acid to water is the characteristic behavior of an acid, where it acts as a proton donor.

The acetate ion (CH3COO-) is the conjugate base of acetic acid, and the hydronium ion (H3O+) is the hydronium ion formed when water accepts the proton.

This equation represents the acid dissociation of acetic acid in water, showing its behavior as an acid.

To know more about acetic acid refer here

brainly.com/question/15202177#

#SPJ11

what are the two starting materials for a robinson annulation?

Answers

The two starting materials for a Robinson annulation are a β-ketoester or a β-ketoaldehyde and an α,β-unsaturated carbonyl compound. The Robinson annulation is a powerful synthetic method used to construct cyclic compounds

The Robinson annulation is a powerful synthetic method used to construct cyclic compounds, specifically six-membered rings, through a sequence of aldol condensation and intramolecular cyclization reactions. The reaction requires two starting materials: a β-ketoester or a β-ketoaldehyde and an α,β-unsaturated carbonyl compound.

The first starting material is a β-ketoester, which is an organic compound containing a ketone group (C=O) and an ester group (C-O-R) attached to the same carbon atom. The β-ketoester provides the β-keto functionality necessary for the subsequent aldol condensation and cyclization steps.

The second starting material is an α,β-unsaturated carbonyl compound, which contains a carbonyl group (C=O) and a carbon-carbon double bond (C=C) conjugated to each other. This compound serves as the Michael acceptor in the reaction, undergoing nucleophilic addition with the β-ketoester intermediate generated during the aldol condensation.

By combining these two starting materials, the Robinson annulation enables the formation of a cyclic compound with a six-membered ring, often with high selectivity and efficiency.

Learn more about Robinson annulation here :

https://brainly.com/question/31217439

#SPJ11

Provide the missing information for each step in the following synthesis. This problem has been solved! You'll get a detailed solution from a subject matter ...

Answers

Identify gaps, conduct research, and gather necessary data to fill missing information in the synthesis.

How can the missing information for each step in the solved synthesis problem be provided?

To provide missing information for each step in a synthesis, you would need to review the steps that have already been taken and identify any gaps or missing pieces of information that are needed to move forward with the process. This might involve conducting further research, gathering additional data or input from experts, or revisiting previous steps to ensure that all necessary information has been considered.
In terms of subject matter, the missing information could relate to any number of topics, depending on the nature of the synthesis and the specific subject area being studied. For example, if the synthesis is focused on a scientific or technical topic, missing information might include details on experimental procedures, data analysis methods, or theoretical frameworks. Alternatively, if the synthesis is focused on a social or cultural topic, missing information might include insights into historical context, cultural practices, or social dynamics that are relevant to the topic at hand.
Ultimately, the key to providing missing information in a synthesis is to carefully consider each step in the process and to identify any gaps or missing pieces of information that need to be addressed. By doing so, you can ensure that your synthesis is comprehensive, accurate, and informed by the best available data and insights.

Learn more about missing information:

brainly.com/question/25294884

#SPJ11

Part 1)
2NO(g)+2H2(g)→N2(g)+2H2O(g)
The rate law for this reaction is first order in H2 and second order in NO. Write the rate law.
The rate law for this reaction is first order in and second order in . Write the rate law

Answers

Based on the information provided, the rate law for the reaction 2NO(g) + 2H2(g) → N2(g) + 2H2O(g) can be written as:
Rate = k[NO]^2[H2]^1
Here, k is the rate constant, [NO] represents the concentration of NO, and [H2] represents the concentration of H2. The reaction is first order with respect to H2 and second order with respect to NO.

The rate law for this reaction can be written as follows:
Rate = k[NO]^2[H2]
Here, k represents the rate constant of the reaction and [NO] and [H2] represent the concentrations of nitrogen oxide and hydrogen gas, respectively. This rate law indicates that the rate of the reaction is directly proportional to the square of the concentration of NO and first order with respect to the concentration of H2. In other words, if the concentration of NO is doubled, the rate of the reaction will increase by a factor of 4, whereas if the concentration of H2 is doubled, the rate will increase by a factor of 2. Therefore, this reaction is first order in H2 and second order in NO.

To know more about rate constant visit:

https://brainly.com/question/20305922

#SPJ11

The standard Gibbs free energy for the reaction below is –12.6 kJ. What is the equilibrium constant for this reaction at 25°C?
2 A + B ⇌ 3 C

Answers

The equilibrium constant (K) for the given reaction at 25°C is approximately 151.6.

To determine the equilibrium constant (K) for a reaction using the standard Gibbs free energy (∆G°), we can use the equation:

∆G° = -RT ln(K)

Where:

∆G° is the standard Gibbs free energy (-12.6 kJ in this case),

R is the gas constant (8.314 J/mol·K),

T is the temperature in Kelvin (25°C = 298 K),

K is the equilibrium constant we want to calculate.

First, we need to convert the given ∆G° from kilojoules to joules:

∆G° = -12.6 kJ * 1000 J/kJ = -12,600 J

Now we can substitute the values into the equation and solve for K:

-12,600 J = -8.314 J/mol·K * 298 K * ln(K)

Dividing both sides by (-8.314 J/mol·K * 298 K):

ln(K) = -12,600 J / (-8.314 J/mol·K * 298 K)

Calculating the right side of the equation:

ln(K) ≈ 5.023

Now, we can take the exponent of both sides to find K:

K ≈ e^(5.023)

Using a calculator, we find:

K ≈ 151.6

Therefore, the equilibrium constant (K) for the given reaction at 25°C is approximately 151.6.

To know more about equilibrium constant refer here

brainly.com/question/28559466#

#SPJ11

the concept that living organisms arise from nonliving material is called:____

Answers

The concept that living organisms arise from nonliving material is called spontaneous generation, also known as abiogenesis or autogenesis.

Spontaneous generation theory suggests that life can emerge spontaneously from inanimate matter under certain conditions. It was widely accepted for many centuries until the experiments conducted by Louis Pasteur and others in the 19th century provided evidence to refute it. These experiments demonstrated that living organisms only arise from pre-existing life through processes such as reproduction.

The principle of biogenesis, which states that life originates from other living organisms, replaced the concept of spontaneous generation in modern biology. This understanding is supported by the observation of the continuity of life through the transfer of genetic material from parent to offspring, as well as the presence of complex biological processes and structures that require specific genetic instructions.

Know more about Living Organism here:

https://brainly.com/question/2273758

#SPJ11

how many milliliters of an aqueous solution of 0.160 m aluminum sulfate is needed to obtain 8.54 grams of the salt?

Answers

Approximately 156 milliliters of the aqueous solution of 0.160 M aluminum sulfate are needed to obtain 8.54 grams of the salt.

To determine the volume of the aqueous solution of aluminum sulfate needed to obtain a certain mass of the salt, we need to use the formula:

moles = mass / molar mass

First, calculate the moles of aluminum sulfate:

moles = 8.54 g / (26.98 g/mol + (2 * 32.06 g/mol + 4 * 16.00 g/mol))

= 8.54 g / 342.15 g/mol

≈ 0.0249 mol

Now, use the molarity (0.160 M) to calculate the volume of the solution:

volume = moles / molarity

= 0.0249 mol / 0.160 mol/L

≈ 0.156 L

Finally, convert the volume from liters to milliliters:

volume = 0.156 L × 1000 mL/L

= 156 mL

Therefore, approximately 156 milliliters of the aqueous solution of 0.160 M aluminum sulfate are needed to obtain 8.54 grams of the salt.

Learn more about aluminum sulfate here:

https://brainly.com/question/30588773

#SPJ11

Write a balanced nuclear equation for the following: The nuclide polonium-210 undergoes alpha emission. (Use the lowest possible coefficients.)

Answers

The balanced nuclear equation for the alpha decay of polonium-210 is Po-210 → Pb-206 + He⁻⁴

In this equation, Po-210 represents polonium-210, Pb-206 represents lead-206, and He⁻⁴ represents helium-4. The subscripts on each element represent the number of protons in the nucleus, and the superscripts represent the total number of nucleons (protons + neutrons) in the nucleus.

In alpha decay, an alpha particle (which is a helium nucleus) is emitted from the nucleus of an atom. The alpha particle has 2 protons and 2 neutrons, so the atomic number of the atom decreases by 2 and the mass number decreases by 4.

In this case, the polonium-210 atom loses 2 protons and 2 neutrons, becoming a lead-206 atom.

To know more about balanced nuclear equation, refer here:

https://brainly.com/question/30852800#

#SPJ11

A certain electrochemical cell has for its cell reaction: zn + hgo → zno + hg which is the half-reaction occurring at the anode?

Answers

The half-reaction occurring at the anode of an electrochemical cell is the one that is reduced. In this case, the half-reaction is: Zn + HgO → ZnO + Hg. Since the zinc is being reduced to zinc oxide in this reaction, it is the anode reaction.  

In an electrochemical cell, the reaction that occurs at the electrode where electrons are being transferred is called the half-reaction. The half-reaction that occurs at the electrode where electrons are being transferred from the solution to the electrode is called the cathode reaction, and the half-reaction that occurs at the electrode where electrons are being transferred to the solution is called the anode reaction. Zn + HgO → ZnO + Hg

The zinc is being reduced to zinc oxide, which means that it is losing electrons. Therefore, the zinc is the cathode of the cell, where the electrons are being transferred from the zinc to the solution. The half-reaction that occurs at the anode of the cell is the one that is oxidized, which means that it is gaining electrons.

Learn more about half-reaction visit: brainly.com/question/26411933

#SPJ4

Other Questions
Which expression is equivalent to 0.6 0.2? A. 0.6 + 0.2 B. -0.6 + 0.2 C. 0.6 + (-0.2) D. -0.6 +(-0.2)aye sorry if i ask a bunch of questions tonight i'm currently running on 2 monsters and a cookie i found at the back of my fridge Which of the following pathological conditions is due to an opaque or cloudy lens?a. astigmatismb. cataractc. glaucomad. strabismus we are trying to reduce the execution time by 30% but this leads to an increase of 20% in the cpi. what clock rate should we have to get this time reduction? Explain why the concentration of HOCl in pool water would change if the pool pH was increased or decreased. In the context of planning a sales call, which of the following statements is true of sales call objectives?A) A salesperson's fear of failure tends to increase when multiple objectives are set.B) The primary call objective should reflect the minimum goal a salesperson seeks to achieve.C) The minimum call objective should reflect a salesperson's long-term goals.D) A salesperson should set a single, clear objective rather than setting multiple objectives.E) The optimistic call objective tends to rarely be achieved. When rounded to the nearest thousand the number of Sea turtle eggs tracked, by the turtle watch is 14000 which number could be the actual number of turtle eggs?? Show your work find the answer to this problem,explain how you got your answer. QuestionThe graph showsf(x)and its transformationg(x) Which equation correctly modelsg(x)?g(x)=3x-2-7 ____ is a large segment of society, composed of hourly workers whose income is somewhat below average. Si x es un nmero, un nmero aumentado en 6 what medicine is used in cattle to soften feces and prevent bloat? Choose the three equivalent forms of 6. 375. six and three eighths, 6. 375%, fifty one eighths six and three seventy fifths, 6. 375%, thirty seven sixths six and three seventy fifths, 637. 5%, thirty seven sixths six and three eighths, 637. 5%, fifty one eighths One of the most aspects of investing is diversification and deciding on which assets the investments will be allocated, To address this need of asset allocation, the mutual fund industry also offers asset allocation funds. Which of the following feature about asset allocation funds is true? A. The managers of these funds establish a desired allocation mix but never change the mix based on the market conditions. B. The managers of these funds establish a desired allocation mix, and as market conditions change over time, the asset allocation mix also changes. Simplify.6 to the power 7/ 6 to the power of 3 = 6[?] according to research, bottle-feeding is recommended only: Which cause of habitat destruction is fastest-growing and most destructive?A. Expansion of citiesB. Draining wetlandsC. Damming of riversD. Cutting down forests A Vestas V90-1.8 MW turbine optimally rotates at 19 rpm's at 10.5 m/s; each blade is 45 meters in length. Find TSR. 8.07 8.52 9.12 7.9 an organization using a region-country focus is highly decentralized. in a train 1/3 of the passengers are listening to music. five passengers are chosen at random. find the probability that exactly three are listening to music .Why was Herschel's strategy for mapping our Galaxy flawed?A. He assumed Earth was at the extreme edge of the Galaxy.B. He relied on visual wavelengths, which are obscured by dust.C. His infrared telescopes couldn't penetrate the dust clouds.D. He used radio telescopes that didn't give enough resolution. how does mary's yes counteract the decision of eve