A walker walks 30 m from the origin toward the EAST to point A. She then walks from point A 20 m more toward the WEST to point B. The walker's total displacement form the origin is
a. 10 m toward the WEST.
b. 50 m toward the EAST.
c. 10 m toward the EAST.
d. 20 m toward the WEST.
e. 30 m toward the WEST.

Answers

Answer 1

Answer: 10m towards to east.

Explanation:

Displacement is the SHORTEST PATH between two points, 30m east - 20m west = 10m towards east from origin.

Answer 2

The correct answer is: (c). 10 m toward the EAST.   The walker's total displacement from the origin is 10 m toward the EAST.

To determine the walker's total displacement from the origin, we need to consider both the magnitude and direction of the displacement.

The walker initially walks 30 m toward the EAST from the origin to point A. This displacement is positive 30 m toward the EAST.

Then, the walker walks 20 m toward the WEST from point A to point B. This displacement is negative 20 m toward the WEST.

To find the total displacement, we need to add these two displacements together:

Total displacement = 30 m (toward the EAST) + (-20 m) (toward the WEST)

Total displacement = 30 m - 20 m

Total displacement = 10 m toward the EAST

Learn more about origin visit:

https://brainly.com/question/30841975

#SPJ11


Related Questions

photons of energy 9.0 ev are incident on a metal. it is found that current flows from the metal until a stopping potential of 4.0 v is applied. 1) If the wavelength of the incident photons is doubled, what is the maximum kinetic energy of the ejected electrons? 2) What would be the maximum kinetic energy of the ejected electrons if the wavelength of the incident photons was tripled?

Answers

The highest energy that the emitted electrons can possess is: KEmax'' = E'' - φ,  we can use the equation for the maximum kinetic energy of ejected electrons in the photoelectric effect.

KEmax = hv - φ

Where:

KEmax is the maximum kinetic energy of the ejected electrons

h is Planck's constant (6.626 × 10^(-34) J·s)

v is the frequency of the incident photons

φ is the work function of the metal (the minimum energy required to remove an electron from the metal)

We know that energy (E) is related to frequency (v) by the equation:

E = hv

Since the energy of each photon is given as 9.0 eV, we need to convert it to joules:

1 eV = 1.602 × 10^(-19) J

Therefore, the energy of each photon is:

E = 9.0 eV × (1.602 × 10^(-19) J/eV) = 1.442 × 10^(-18) J

Now let's calculate the maximum kinetic energy for the given conditions:

When the wavelength is doubled, the frequency is halved (assuming constant speed of light). So, the new frequency (v') is half of the original frequency (v). The energy of the new photons is also halved:

E' = E/2 = (1.442 × 10^(-18) J) / 2 = 7.21 × 10^(-19) J

The maximum kinetic energy of the ejected electrons is:

KEmax' = E' - φ

When the wavelength is tripled, the frequency is divided by three. So, the new frequency (v'') is one-third of the original frequency (v). The energy of the new photons is also one-third of the original energy:

E'' = E/3 = (1.442 × 10^(-18) J) / 3 ≈ 4.807 × 10^(-19) J

The maximum kinetic energy of the ejected electrons is:

KEmax'' = E'' - φ

In both cases, we need to know the work function (φ) of the metal to calculate the maximum kinetic energy accurately. Once the work function is provided, we can substitute the values and calculate the maximum kinetic energies accordingly.

learn more about photoelectric here

https://brainly.com/question/9260704

#SPJ11

There are two bowls having spinning marbles in them. One bowl contains marble with water and the other bowl contain only marble without water. Which marble will stop first?

Answers

There are two bowls having spinning marbles in them, one bowl contains marble with water and the other bowl contain only marble without water, the marble will stop first is without water

This is because of the law of conservation of energy, which states that energy cannot be created or destroyed, but can only be transferred or converted from one form to another.When the bowl with marbles without water spins, the marbles transfer their kinetic energy to the bowl, which slows them down and eventually stops them.

However, when the bowl with marble and water spins, the kinetic energy of the marbles is transferred to the water. The water absorbs some of the energy and moves in the opposite direction, creating resistance, this resistance slows down the marbles, but not as quickly as in the bowl with only marbles. Therefore, when two bowls have spinning marbles, the one with only marbles without water will stop first,

Learn more about kinetic energy at

https://brainly.com/question/22174271

#SPJ11

how does the wavelength of an x-ray produced from a k-alpha transition in iron (fe, z=26) compare to that of copper (cu, z=29)?

Answers

The wavelength of an X-ray produced from a K-alpha transition in iron (Fe, Z=26) is shorter than that of copper (Cu, Z=29).

Determine the wavelength of an x-ray?

The wavelength of X-rays produced from atomic transitions can be calculated using the Moseley's law:

λ = (k / (Z - σ))²

where λ is the wavelength, k is a constant, Z is the atomic number of the element, and σ is the screening constant.

For K-alpha transitions, the value of σ is approximately 1.

Comparing iron (Fe) with an atomic number of 26 and copper (Cu) with an atomic number of 29, we can see that the atomic number Z is greater for copper. As Z increases, the wavelength of the X-ray produced decreases.

Therefore, the wavelength of an X-ray produced from a K-alpha transition in iron is shorter than that of copper.

To know more about atomic number, refer here:

https://brainly.com/question/16858932#

#SPJ4

repeat part a for a bass viol, which is typically played by a person standing up. the portion of a bass violin string that is free to vibrate is about 1.0 m long. the g2 string produces a note with frequency 98 hz when vibrating in its fundamental standing wave.

Answers

The g2 string of a bass viol produces a note with a frequency of 171.5 Hz when vibrating in its fundamental standing wave.

For a bass viol, which is typically played by a person standing up, the process of determining the length of the string that is free to vibrate is similar to that of a bass violin. The portion of a bass viol string that is free to vibrate is about 1.0 m long. This means that the frequency produced by the string in its fundamental standing wave is determined by the length of the string and the speed of sound.
To calculate the frequency produced by the g2 string of a bass viol, we need to use the formula:
frequency = (speed of sound)/(2 x length of string)
The speed of sound in air at room temperature is approximately 343 m/s. So, substituting the given values, we get:
frequency = 343/(2 x 1.0) = 171.5 Hz

To know more about frequency visit:-

https://brainly.com/question/29739263

#SPJ11

A process fluid having a specific heat of 3500 J/kg·K and flowing at 2 kg/s is to be cooled from 80°C to 50°C with chilled water, which is supplied at a temperature of 15°C and a flow rate of 2.5 kg/s. Assuming an overall heat transfer coefficient of 1250 W/m2·K, calculate the required heat transfer areas, in m2, for the following exchanger configurations:(a) cross-flow, single pass, both fluids unmixed. Use the appropriate heat exchanger effectiveness relations. Your work can be reduced by using IHT.

Answers

The required heat transfer area for a cross-flow, single pass heat exchanger with unmixed fluids can be calculated using the appropriate heat exchanger effectiveness relations. For the given scenario, the required heat transfer area is 2.5 m².

Determine how will the required heat transfer area?

To calculate the required heat transfer area, we can use the heat exchanger effectiveness (ε) relation for a cross-flow, single pass heat exchanger with unmixed fluids:

[tex]\[\varepsilon = \frac{{1 - e^{-NTU(1-\varepsilon)}}}{{1 - e^{-NTU}}}\][/tex]

Where NTU is the number of transfer units and can be calculated as:

[tex]\[\text{{NTU}} = \frac{{UA}}{{\min(C_{\text{{min}}})}}\][/tex]

In this case, the specific heat capacity of the process fluid (C_p1) is 3500 J/kg·K, and the mass flow rate of the process fluid (m_1) is 2 kg/s. The specific heat capacity of the chilled water (C_p2) is also 3500 J/kg·K, and the mass flow rate of the chilled water (m_2) is 2.5 kg/s. The overall heat transfer coefficient (U) is 1250 W/m²·K.

First, we calculate the minimum specific heat capacity (C_min) between the two fluids:

[tex]\[C_{\text{min}} = \min(C_{p1}, C_{p2}) = 3500 \, \text{J/kg} \cdot \text{K}\][/tex]

Next, we calculate the number of transfer units (NTU):

[tex]\[\text{NTU} = \frac{{U \cdot A}}{{C_{\text{min}}}} = \frac{{1250 \, \text{W/m}^2 \cdot \text{K} \cdot A}}{{3500 \, \text{J/kg} \cdot \text{K}}}\][/tex]

We can rearrange the equation to solve for the required heat transfer area (A):

[tex]\[A = \frac{{\text{NTU} \cdot C_{\text{min}}}}{{U}} = \left[\frac{{1250 \, \text{W/m}^2 \cdot \text{K} \cdot A}}{{3500 \, \text{J/kg} \cdot \text{K}}}\right] \cdot \frac{{3500 \, \text{J/kg} \cdot \text{K}}}{{1250 \, \text{W/m}^2 \cdot \text{K}}}\][/tex]

Simplifying the equation, we find:

A = 2.5 m²

Therefore, the required heat transfer area for the given heat exchanger configuration is 2.5 m².

To know more about heat capacity, refer here:

https://brainly.com/question/28302909#

#SPJ4

Two infinite sheets of charge with charge +sigma and -sigma are distance d apart(+ on left, - on right). A particle of mass m and charge -q is released from rest at a point just to the left of the negative sheet. Find the speed of the particle as it reaches the left (positive) sheet. Express in terms of given variables.

Answers

The speed of the particle as it reaches the left (positive) sheet is given by v = √((2qσ)/(ε₀m) * ln((d+√(d²+a²))/(√a))).

Determine the conservation of energy?

We can use the conservation of energy to solve this problem. The initial potential energy of the particle is zero since it is released from rest. As the particle moves towards the positive sheet, it gains potential energy due to the repulsive force from the negative sheet. This potential energy is converted into kinetic energy, resulting in the particle's speed.

The potential energy gained by the particle is given by ΔU = qΔV, where ΔV is the potential difference between the sheets. ΔV can be calculated using the electric field created by the infinite sheets of charge. The electric field at a distance a from an infinite sheet of charge with surface charge density σ is E = σ/(2ε₀). Therefore, ΔV = E * d = (σd)/(2ε₀).

The potential energy gained is converted into kinetic energy: ΔU = (1/2)mv². Equating the expressions for ΔU and (1/2)mv² and solving for v, we obtain the equation mentioned above.

Therefore, the final speed of the particle reaching the positive sheet is the square root of a formula involving the charges, distance, and other variables, as well as the natural logarithm of a particular expression.

To know more about force, refer here:

https://brainly.com/question/30507236#

#SPJ4

It can be proved that the particle’s velocity is inversely proportional to the square root of the distance it travels. The particle's motion is symmetric about the midpoint of the sheets. Assume the distance d between the sheets is much smaller than the distance r between the particle and the sheets. Let the midpoint of the sheets be the origin of the coordinate system. For the sheet on the right, y = -d/2 and σ = -σ, and for the sheet on the left, y = d/2 and σ = +σ.Consider the electric potential at a point P on the y-axis where the distance from the midpoint is y. Then, the electric potential at P is given byV=σ/2ϵ−σ/2ϵ=0where ϵ is the permittivity of the medium. The electric field in the region is uniform since the sheets are infinite. The electric field vector is directed toward the negative sheet. Therefore, the electric field at point P on the y-axis is given bye=σϵwhere e is the electric field strength. The electric potential energy of the charge q at point P is given byU=qV=qσ/2ϵ=qEywhere y is the y-coordinate of P. It can be proved that the particle’s velocity is inversely proportional to the square root of the distance it travels. Therefore, the kinetic energy of the particle, when it reaches the positive sheet, is given by K = (1/2)mv² where v is the velocity of the particle.The work done by the electric force in moving the particle from the negative sheet to the positive sheet is equal to the increase in the kinetic energy of the particle. Therefore, W = K - 0 = (1/2)mv²The work done by the electric force is given by

W = -qEy The minus sign indicates that the electric force is in the opposite direction of the particle’s motion. Therefore,-qEy = (1/2)mv²v = -√(2qEy/m)In terms of the given variables, the speed of the particle as it reaches the left (positive) sheet is

v = -√(2qσd/ϵm)

To know more about Force visit

https://brainly.com/question/32523525

SPJ11

The principles on which special relativity is based include all the following except:
a. only the universal rest frame gives correct measurements
b. an observer in an inertial reference frame cannot tell if they are in motion or not
c. the laws describing observed motion are the same in any inertial reference frame
d. the speed of light is the same in any frame of reference
e. observers in two inertial frames agree on the speed of the other observer

Answers

As there are multiple principles on which special relativity is based, and only one of them is not included in the given options. Therefore, I will briefly explain all the principles and then state which one is not included.

Special relativity is based on several fundamental principles, including the principle of relativity, the constancy of the speed of light, and the equivalence of mass and energy. The principle of relativity states that the laws of physics are the same in all inertial reference frames, meaning that the physical laws governing motion are the same regardless of whether the observer is stationary or moving at a constant velocity. This principle is embodied in option (c) of your question.

The constancy of the speed of light is another fundamental principle of special relativity, which states that the speed of light in a vacuum is always the same, regardless of the motion of the observer or the source of the light. This principle is embodied in option (d) of your question.The equivalence of mass and energy is also a fundamental principle of special relativity, which is expressed by the famous equation E=mc². This principle asserts that mass and energy are interchangeable and that the total energy of a system is conserved. However, this principle is not directly relevant to the options in your question. Therefore, the one option that is not included in the principles on which special relativity is based is option (a), which states that only the universal rest frame gives correct measurements. This is not true in special relativity, as all inertial reference frames are equally valid for describing physical phenomena.

To know more about velocity visit:

https://brainly.com/question/30559316

#SPJ11

What information does Doppler radar give that conventional radar cannot? air pressure relative humidity wind speed and direction vertical development Rayleigh scattering

Answers

Doppler radar provides information about the movement and velocity of objects in its field of view, which conventional radar cannot. Specifically, it can detect changes in the frequency of radio waves that occur when they bounce off moving objects, such as precipitation, wind, and even insects. This allows Doppler radar to measure the speed and direction of wind and precipitation, as well as the strength and organization of storms. Additionally, Doppler radar can provide information about vertical development, which conventional radar cannot. This means that it can detect the height of thunderstorm clouds and the potential for severe weather, such as tornadoes. While conventional radar can provide information about air pressure and relative humidity, Doppler radar is better suited for detecting atmospheric conditions that can lead to severe weather. Lastly, Rayleigh scattering refers to the scattering of light or other electromagnetic radiation by particles much smaller than the wavelength of the radiation. Doppler radar makes use of this effect to detect and analyze the movement of precipitation particles.

Doppler radar is capable of measuring both wind speed and direction, whereas conventional radar cannot. This is achieved through the detection of the Doppler shift in the frequency of the radar waves, allowing for more accurate weather forecasting.
In addition, Doppler radar can provide insight into the vertical development of storms. This is crucial for identifying the structure and intensity of severe weather systems, such as thunderstorms and tornadoes, which is not possible with conventional radar alone.
While conventional radar relies primarily on Rayleigh scattering to detect precipitation, Doppler radar's ability to measure wind speed and direction allows for a more comprehensive understanding of the atmosphere. This is particularly useful for monitoring and predicting the development of severe weather events. However, it is important to note that Doppler radar does not directly measure air pressure or relative humidity, but the data it provides can be used in conjunction with other meteorological measurements to better understand weather conditions.

To know more about Doppler radar  visit

https://brainly.com/question/32222353

SPJ11

he wheels of a skateboard roll without slipping as it accelerates at 0.35 m>s2 down an 85-m-long hill. if the skateboarder travels at 1.8 m>s at the top of the hill, what is the average angular speed of the 2.6-cm-radius whe els during the entire trip down the hill?

Answers

The average angular speed of the 2.6-cm-radius wheels during the entire trip down the hill is approximately 3.82 rad/s.


To find the average angular speed, we first need to calculate the final linear velocity (v) at the bottom of the hill. We can use the equation v^2 = u^2 + 2as, where u is the initial velocity (1.8 m/s), a is acceleration (0.35 m/s²), and s is the distance (85 m). Solving for v, we get v ≈ 7.33 m/s.

Next, we find the average linear speed by taking the mean of the initial and final velocities: (1.8 + 7.33)/2 ≈ 4.565 m/s.

Now, we can find the average angular speed (ω) using the formula ω = v/r, where r is the radius of the wheels (0.026 m). Therefore, ω ≈ 4.565 / 0.026 ≈ 3.82 rad/s.

Learn more about angular speed here:

https://brainly.com/question/14663644

#SPJ11

Select the higher harmonics of a string fixed at both ends that has a fundamental frequency of 80 Hz. 200 Hz 80 Hz 240 Hz 160 Hz 120 Hz

Answers

The higher harmonics of a string fixed at both ends are integer multiples of the fundamental frequency. In this case, the fundamental frequency is 80 Hz.

To find the higher harmonics, we can multiply the fundamental frequency by integers.

The possible higher harmonics are:

1st harmonic: 80 Hz

2nd harmonic: 2 * 80 Hz = 160 Hz

3rd harmonic: 3 * 80 Hz = 240 Hz

Therefore, the higher harmonics of the string with a fundamental frequency of 80 Hz are 160 Hz and 240 Hz.

In the given example, the fundamental frequency of the string is 80 Hz. To find the higher harmonics, we can multiply 80 Hz by integers. The first harmonic is just the fundamental frequency itself, so it is 80 Hz. The second harmonic is twice the fundamental frequency, or 2 * 80 Hz = 160 Hz. The third harmonic is three times the fundamental frequency, or 3 * 80 Hz = 240 Hz.

Therefore, the higher harmonics of the string with a fundamental frequency of 80 Hz are 160 Hz and 240 Hz. These frequencies are integer multiples of the fundamental frequency and contribute to the overall sound of the vibrating string.

Learn more about frequency from

https://brainly.com/question/254161

#SPJ11

according to faraday's law, a coil in a strong magnetic field must have a greater induced emf in it than a coil in a weak magnetic field. True/False?

Answers

False. According to Faraday's law of electromagnetic induction, the magnitude of the induced electromotive force (emf) in a coil is determined by the rate at which the magnetic field passing through the coil changes.

Faraday's law states that the induced emf in a coil is directly proportional to the rate of change of magnetic flux through the coil. Magnetic flux is a measure of the total magnetic field passing through a given area.

Therefore, the induced emf in a coil will be greater if there is a faster rate of change of magnetic flux, regardless of whether the magnetic field is strong or weak. It is the change in the magnetic field or the movement of the coil with respect to the magnetic field that determines the induced emf, not the absolute strength of the magnetic field alone.

So, the statement that a coil in a strong magnetic field must have a greater induced emf is false.

Learn more about magnitude here

https://brainly.com/question/30337362

#SPJ11

If radio waves are used to communicate with an alien spacecraft approaching the earth at 10% of the speed of light, the alien spacecraft will receive our signal at the speed of light

Answers

If radio waves are used to communicate with an alien spacecraft approaching the Earth at 10% of the speed of light, the alien spacecraft will still receive our signal at the speed of light.

The speed of light in a vacuum is a fundamental constant of nature and is always constant regardless of the relative velocity between the source and the receiver. According to the theory of special relativity, the speed of light is the maximum speed at which information or signals can travel.

Even though the alien spacecraft is approaching the Earth at 10% of the speed of light, the radio waves emitted by the Earth will still reach the spacecraft at the speed of light. This is because the speed of light is independent of the motion of the source or the receiver.

Therefore, the alien spacecraft will receive our signal at the speed of light, regardless of its own velocity.

Learn more about relative velocity here:

https://brainly.com/question/29655726


#SPJ11

Certain cancers of the liver can be treated by injecting microscopic glass spheres containing radioactive 90Y into the blood vessels that supply the tumor. The spheres become lodged in the small capillaries of the tumor, both cutting off its blood supply and delivering a high dose of radiation. 90Y has a half-life of 64 h and emits a beta particle with an average energy of 0.89 MeV.
What is the total dose equivalent for an injection with an initial activity of 4.0×107Bq if all the energy is deposited in a 46 g tumor?
Express your answer with the appropriate units.

Answers

The total dose equivalent for an injection with an initial activity of 4.0×10^7 Bq, depositing all energy in a 46 g tumor, is 193.6 Gy.

To calculate the total dose equivalent, follow these steps:
1. Determine the total energy emitted: Initial activity (4.0×10^7 Bq) * average energy per decay (0.89 MeV) * half-life (64 h) * 3600 s/h * 1.602×10^-13 J/MeV = 3.31×10^4 J
2. Convert the tumor mass to kg: 46 g * 1 kg/1000 g = 0.046 kg
3. Calculate the absorbed dose: Total energy (3.31×10^4 J) / tumor mass (0.046 kg) = 719.6 J/kg
4. Convert the absorbed dose to Gy: 719.6 J/kg * 1 Gy/J/kg = 719.6 Gy
5. Since all energy is deposited in the tumor, the total dose equivalent is equal to the absorbed dose, which is 193.6 Gy.

Learn more about half-life here:

https://brainly.com/question/22574152

#SPJ11

a convex lens with a focal length of 15 cm creates an image 30.0 cm away on its principal axis. how far from the mirror is the corresponding object?

Answers

The object is located 30 cm away from the lens, on the opposite side of the lens from the image.


The focal length of a convex lens is positive, so we know that the lens is converging the light. We can use the thin lens formula to relate the distances of the object, image, and lens:
1/f = 1/d_o + 1/d_i
where f is the focal length, d_o is the distance of the object from the lens, and d_i is the distance of the image from the lens. We know f = 15 cm and d_i = 30.0 cm, so we can solve for d_o:
1/15 = 1/d_o + 1/30
Multiplying both sides by 30d_o gives:
2d_o - 30 = d_o
Rearranging gives:
d_o = 30 cm
To know more about focal length, visit:

https://brainly.com/question/31755962

#SPJ11

how far does the cart in question 5 travel in 4.00 seconds? calculate the distance x two ways, first using equation 3 and then using equation 4. show your work

Answers

The cart in question 5 travels a distance of 32 meters in 4.00 seconds, calculated using equation 3 (kinematic equation for distance) and equation 4 (kinematic equation for velocity).

Let's assume the initial velocity of the cart is 0 m/s, as it starts from rest.

Using equation 3 (kinematic equation for distance):

The equation for distance covered (d) can be given as:

d = v0t + (1/2)at^2

Given:

v0 (initial velocity) = 0 m/s

t (time) = 4.00 s

a (acceleration) = 4.00 m/s^2 (from question 5)

Substituting the values into the equation:

d = 0 * 4.00 + (1/2) * 4.00 * (4.00)^2

d = 0 + (1/2) * 4.00 * 16.00

d = 0 + 32.00

d = 32.00 meters

Using equation 4 (kinematic equation for velocity):

The equation for distance covered (d) can be given as:

d = (1/2)(v0 + v)t

Given:

v0 (initial velocity) = 0 m/s

t (time) = 4.00 s

v (final velocity) = at (from question 5)

= 4.00 m/s^2 * 4.00 s

= 16.00 m/s

Substituting the values into the equation:

d = (1/2)(0 + 16.00) * 4.00

d = (1/2)(16.00) * 4.00

d = 8.00 * 4.00

d = 32.00 meters

The cart in question 5 travels a distance of 32 meters in 4.00 seconds, calculated using both equation 3 (d = v0t + (1/2)at^2) and equation 4 (d = (1/2)(v0 + v)t). Both methods yield the same result, demonstrating the consistency and validity of the kinematic equations.

To know more about distance ,visit:

https://brainly.com/question/26550516

#SPJ11

Consider a cylindrical capacitor with two concentric cylindrical shells of radii a=15.1m and b=54.0 m, and charge +Q on the inner one and −Q on the outer one where Q=30.3 C. Let the length of the cylinders be h=3.68e+4 m but ignore fringing fields.
Part a
Find the capacitance of the capacitor
Now consider the same problem (without dielectric) but when the cylinders are replaced by two concentric spherical metal surfaces of radii a=53.4 m b=87.2 m. Calculate the capacitance of the capacitor.

Answers

The capacitance of the cylindrical capacitor is 1.86 × 10⁻⁶ F.

To calculate the capacitance of the cylindrical capacitor, we can use the formula:

C = (2πε₀h) / ln(b/a),

where C is the capacitance, ε₀ is the vacuum permittivity, h is the length of the cylinders, a is the radius of the inner shell, and b is the radius of the outer shell.

Plugging in the given values:

C = (2π × 8.854 × 10⁻¹² F/m × 3.68 × 10⁴ m) / ln(54.0/15.1) ≈ 1.86 × 10⁻⁶ F.

The capacitance of the cylindrical capacitor is approximately 1.86 microfarads (μF).

Determine the capacitance?

The formula for the capacitance of a cylindrical capacitor is derived from Gauss's law. It takes into account the geometry of the capacitor and the dielectric material between the cylindrical shells. In this case, we are assuming there is no dielectric material, so the vacuum permittivity (ε₀) is used.

The natural logarithm function (ln) is used to calculate the logarithmic ratio of the outer and inner radii (b/a). The length of the cylinders (h) is multiplied by 2π to account for the cylindrical shape.

Plugging in the given values into the formula, we can calculate the capacitance. The resulting value is given in farads (F), which is a measure of the capacitor's ability to store electric charge. In this case, the capacitance is approximately 1.86 microfarads (μF).

To know more about logarithm, refer here:

https://brainly.com/question/30226560#

#SPJ4

in the formation of planetary systems, little dust particles clump together by electric charge. group of answer choices true false

Answers

True. In the early stages of planetary formation, small dust particles collide and stick together due to electrostatic forces. As they clump together, they become larger and their gravitational pull increases, allowing them to attract more dust and gas. Over time, these clumps grow into planetesimals, which can eventually become planets. The process of dust clumping together is known as accretion and is an important step in the formation of planetary systems. However, it is important to note that there are other factors involved in planetary formation, such as the temperature and density of the surrounding gas and the presence of protoplanetary disks.

In the formation of planetary systems, it is true that little dust particles clump together. However, it is not solely due to electric charge. The process involves several factors such as gravitational forces, static electricity, and other forces.

Initially, dust particles collide and stick together due to electrostatic forces, forming larger clumps called planetesimals. As these planetesimals grow in size, their gravitational attraction increases, pulling in more particles and forming even larger bodies. Eventually, these bodies become large enough to form planets, moons, and other celestial objects.

So, the statement is partially true, as electric charge plays a role in the initial clumping of dust particles, but other forces also contribute to the formation of planetary systems.

To know more about Electrostatic forces visit

https://brainly.com/question/31042490

SPJ11

Kelplers 3 laws in your own words

Answers

According to Kepler's first law of planetary motion, planets revolve around the sun such that the sun is always at one of its foci. This law is also known as the law of orbits.

According to Kepler's Second Law of planetary motion, a planet will cover equal amounts of area in an equal period of time if a line is drawn from the sun to the planet. This implies that the planet moves more slowly away from the sun and faster towards it.

According to Kepler's third Law of Planetary Motion, the squares of the orbital periods of the planets are directly proportional to the cubes of their semi-major axes.

To learn more about Kepler's Laws, click:

https://brainly.com/question/31460815

#SPJ

in the wind tunnel you measure the total horizontal force acting on the car to be 300 n. is your new design better than the camry design?

Answers

The new car body design is better than the Camry design because it achieves a lower coefficient of drag (CD).

What is coefficient of drag (CD)?

The coefficient of drag (CD), also referred to as the drag coefficient, is a dimensionless quantity that represents the resistance to motion experienced by an object as it moves through a fluid (such as air or water). It quantifies the efficiency with which an object can move through the fluid without being slowed down by drag forces.

The coefficient of drag (CD) measures the resistance to airflow of an object moving through a fluid, in this case, air. A lower CD value indicates better aerodynamic performance.

To determine if the new design is better than the Camry design, we compare their respective CD values.

Given that the CD of the Camry is 0.32, we need to calculate the CD of the new design using the provided information.

Using the equation CD = (2 * F) / (ρ * A * v²), where F is the total force acting on the car, ρ is the air density, A is the surface area of the car, and v is the velocity of the air.

The air density (ρ) at 1 atm and 25°C can be obtained from air density tables or calculated using the ideal gas law. Assuming standard atmospheric conditions, the air density is approximately 1.184 kg/m³.

The velocity of the air (v) is given as 90 km/h, which needs to be converted to m/s by dividing it by 3.6. Thus, v = 90 km/h / 3.6 = 25 m/s.

Substituting the values into the equation, CD = (2 * 300 N) / (1.184 kg/m³ * 6 m² * 25 m/s)², we can solve for CD.

After calculating the CD for the new design, if the obtained CD value is lower than 0.32, then the new design has a lower coefficient of drag and is considered better than the Camry design.

To know more about  coefficient of drag (CD), refer here:

https://brainly.com/question/14040167#

#SPJ4

Complete question:

You and your friends decide to build a new car body that will have a lower coefficient of drag than your current Toyota Camry (CD=0.32). To test this theory, you build a model of you car body and take it to Drexel's wind tunnel facility for experimental testing. You set the wind tunnel specifications to 1 atm, 25°C, and 90 km/h. The height of your car is 1.40 m and the width is 1.65 m. The total surface area of the body design is 6 m². In the wind tunnel you measure the total horizontal force acting on the car to be 300 N. Is your new design better than the Camry design?

A thin film of oil with an index of refraction n = 1.5 and thickness t = 55 nm floats on water. The oil is illuminated from above, perpendicular to the surface.
Part A: What is the longest wavelength of light, in nanometers, that will undergo destructive interference when it is shone on the oil?
Part B: What is the next longest wavelength of light, in nanometers, that will undergo destructive interference when it is shone on the oil?
Part C: What is the longest wavelength of light, in nanometers, that will undergo constructive interference when it is shone on the oil?

Answers

Part A: The longest wavelength of light that will undergo destructive interference when shone on the oil is 220 nm.
Part B: The next longest wavelength of light that will undergo destructive interference when shone on the oil is 440 nm.
Part C: The longest wavelength of light that will undergo constructive interference when shone on the oil is 330 nm.


For destructive interference, the path difference should be an odd multiple of λ/2, where λ is the wavelength. Since the oil has an index of refraction n = 1.5, the path difference is 2nt. The equation for destructive interference is:
2nt = (2m-1)λ/2
For the longest wavelength (m = 1), λ = 4nt, which results in λ = 220 nm.

For the next longest wavelength (m = 2), λ = 4nt/3, which results in λ = 440 nm.

For constructive interference, the path difference should be a multiple of λ. The equation for constructive interference is:
2nt = mλ
For the longest wavelength (m = 1), λ = 2nt, which results in λ = 330 nm.

Learn more about interference here:

https://brainly.com/question/14516786

#SPJ11

An unlined tunnel which will carry water for a hydroelectric project is to be constructed in granite. The maximum water pressure acting on the granite is estimated to be 10MPa. The modulus of elasticity of the granite is measured to be 3.4 x 104 MPa: 1) How much will 3 m of rock around the tunnel be strained by the force of the water? ii) If the weight of the rock is 25.9 kN/m' and the tunnel is overlain by 20 m of rock, what is the rock stress in KN mº acting on the top of the tunnel

Answers

To solve these problems, we'll use the following formulas:

(i) Strain (ε) = Stress (σ) / Modulus of Elasticity (E)

(ii) Stress (σ) = Weight (W) / Area (A)

Given:

Maximum water pressure = 10 MPa

Modulus of elasticity of granite (E) = 3.4 x 10^4 MPa

Rock weight (W) = 25.9 kN/m^3

Tunnel depth (h) = 20 m

Let's calculate each part:

(i) Strain:

To calculate the strain of the rock, we need to convert the water pressure to stress by multiplying it by the factor of safety (FS). Let's assume a factor of safety of 1.5.

Stress = Maximum water pressure x Factor of safety

σ = 10 MPa x 1.5

σ = 15 MPa

Now we can calculate the strain:

ε = σ / E

ε = 15 MPa / (3.4 x 10^4 MPa)

ε ≈ 4.41 x 10^-4

The rock around the tunnel will be strained by approximately 4.41 x 10^-4.

(ii) Rock Stress:

To calculate the rock stress acting on the top of the tunnel, we need to consider the weight of the overlying rock. The stress will be the weight of the rock divided by the area.

Weight of the rock = Rock weight x Tunnel depth

W = 25.9 kN/m^3 x 20 m

W = 518 kN/m^2

Area of the tunnel (A) = 3 m (assuming a circular cross-section)

Using the formula for stress:

σ = W / A

σ = 518 kN/m^2 / 3 m^2

σ ≈ 172.67 kN/m^2

The rock stress acting on the top of the tunnel is approximately 172.67 kN/m^2.

Therefore, the answers are:

(i) The rock around the tunnel will be strained by approximately 4.41 x 10^-4.

(ii) The rock stress acting on the top of the tunnel is approximately 172.67 kN/m^2.

Learn more about Stress (σ) = Weight (W) / Area from

https://brainly.com/question/30116315

#SPJ11

(d) not enough information given
7. A woman lifts a box from the floor. She then carries with constant speed to the other side of the
room, where she puts the box down. How much work does she do on the box while walking across
the floor at constant speed?
(a) zero J
(b) more than zero J
(c) more information needed to determine

Answers

The work done on the box, while walking across the floor is zero J. So, option a.

Work done on an object is defined as the dot product of the amount of force exerted on the object and the displacement of the object.

So,

W = F.S

W = FS cosθ

where F is the force and S is the displacement caused on the object and θ is the angle between the force and displacement.

In the given situation, the woman lifts the box from the floor and then carries it with a constant speed across the floor.

So, the force acting on the box while walking will be the weight of the box, which is acting downwards. Since she is walking with it, the direction of its displacement will be along the horizonal.

Thus, we can say that the force and displacement are mutually perpendicular.

Therefore, the equation of the work done on the box, while walking across the floor is given by,

W = FS cosθ

W = FS cos90°

W = FS x 0

W = 0

To learn more about work done, click:

https://brainly.com/question/13662169

#SPJ1

Determine the magnitude of the acceleration at P when the
blades have turned the 2 revolutions.
A) 0 ft/s2 B) 3.5 ft/s2
C) 115.95 ft/s2 D) 116 ft/s2

Answers

To determine the magnitude of the acceleration at point P, we need to consider the radial acceleration caused by the circular motion of the blades.

The acceleration at point P is given by the formula:

a = rω²

where r is the radius of the circular path and ω is the angular velocity.

Since the blades have turned 2 revolutions, we know that the angle covered is 2π radians. The angular velocity ω is related to the time it takes to complete one revolution by the equation:

ω = 2π / T

where T is the period of one revolution. Since the blades turn 2 revolutions, the period T is given by:

T = 2 * T1

where T1 is the period for one revolution.

We also know that the linear speed v at the tip of the blades is 8 ft/s.

The radius of the circular path can be calculated using the formula:

r = v / ω

Substituting the expressions for ω and T, we have:

r = v / (2π / T1)

Simplifying:

r = v * T1 / (2π)

Now, we can substitute the given values into the equation:

v = 8 ft/s

T1 = 1 s (assuming the time for one revolution)

r = 8 * 1 / (2π)

r ≈ 1.273 ft

Next, we can calculate the angular velocity ω:

ω = 2π / T1

ω = 2π / 1

ω = 2π rad/s

Finally, we can calculate the acceleration at point P using the formula:

a = rω²

a = (1.273 ft) * (2π rad/s)²

a ≈ 115.95 ft/s²

Therefore, the magnitude of the acceleration at point P, when the blades have turned 2 revolutions, is approximately 115.95 ft/s². The correct option is C) 115.95 ft/s².

Learn more about acceleration at point P from

https://brainly.com/question/30514205

#SPJ11

The graph below represents the motion of a car travelling horizontally along a straight stretch of road in the positive direction. position- time graph. position (m). time (s). 0; 10; 20; 30. 0; 1; 2; 3; 4. Clear According to the information and graph above, what is the displacement of the car between t = 1 s and t = 4 s? A 0 m B 5 m C 15 m D 20 m Related 2-2 Back

Answers

Answer:

The correct answer is option D: 20 m.

Explanation:

if a red ball is higher than a blue ball and both balls have the same mass, which ball has more potential energy?

Answers

The red ball has more potential energy than the blue ball. Potential energy is determined by the height of the object and its mass. Since both balls have the same mass, the ball that is higher has more potential energy.

In a gravitational field, potential energy is determined by the height or position of an object. The potential energy of an object increases with its height above a reference point.

In this scenario, if the red ball is higher than the blue ball and both balls have the same mass, the red ball would have more potential energy. This is because the red ball is positioned at a greater height above the reference point (such as the ground) compared to the blue ball. The potential energy of an object is directly proportional to its height, so the higher the object, the greater its potential energy.

Learn more about energy.  from

https://brainly.com/question/13881533

#SPJ11

what is the minimum coefficient of static friction to round without sliding a curve with a radius of curvature of 80 m at a speed of 30 m.p.h. (13.4 m/s)? assume the road is flat.

Answers

The minimum coefficient of static friction required is approximately 0.228 to prevent the car from sliding around the curve on a flat road.

To determine the minimum coefficient of static friction (μs) required to prevent a car from sliding around a curve with a radius of curvature (r) of 80 meters at a speed (v) of 13.4 m/s, we can use the following formula:
μs ≥ (v^2) / (r * g)
Where g is the acceleration due to gravity, approximately 9.81 m/s^2. Plugging in the values, we get:
μs ≥ (13.4^2) / (80 * 9.81)
μs ≥ 179.56 / 784.8
μs ≥ 0.228
To know more about  coefficient of static friction, visit:

https://brainly.com/question/16859236

#SPJ11

The loop is in a magnetic field 0.30 T whose direction is perpendicular to the plane of the loop. At t = 0, the loop has area A = 0.285 m2. Suppose the radius of the elastic loop increases at a constant rate, dr/dt = 2.80 cm/s. Part A: Determine the emf induced in the loop at t = 0 and at t = 1.00 s. Express your answer using two significant figures. E(0) = ______ mV Part B: E(1.00) = _______ mV

Answers

Part A: The emf induced in the loop at t = 0 is approximately 0.24 mV, and at t = 1.00 s, it is approximately 2.42 mV.

Determine the emf induced?

The emf induced in a loop can be calculated using Faraday's law of electromagnetic induction, which states that the emf is equal to the rate of change of magnetic flux through the loop.

At t = 0, the loop has an area A = 0.285 m². Since the magnetic field B is perpendicular to the plane of the loop, the magnetic flux Φ through the loop is given by Φ = B * A.

Substituting the given values, Φ₀ = 0.30 T * 0.285 m² = 0.0855 T·m².

The emf E induced at t = 0 is given by E₀ = -dΦ/dt|₀. Since the area of the loop is increasing at a constant rate, dr/dt = 2.80 cm/s = 0.028 m/s, the time derivative of the flux is dΦ/dt = B * dA/dt = B * (d/dt)(πr²) = B * (2πr * dr/dt). At t = 0, r = √(A/π) = √(0.285/π) m.

Substituting the values, E₀ = -(0.30 T * 2π * √(0.285/π) * 0.028 m/s).

At t = 1.00 s, the radius of the loop has increased. Using the given rate of increase, we can find the new radius r₁ = √(A/π) + (dr/dt * t) = √(0.285/π) + (0.028 m/s * 1.00 s).

The new flux Φ₁ = B * A₁ = 0.30 T * π * r₁². The emf at t = 1.00 s is given by E₁ = -(0.30 T * 2π * r₁ * dr/dt).

Therefore, Evaluating the calculations yields E₀ ≈ 0.24 mV and E₁ ≈ 2.42 mV.

To know more about emf induced, refer here:

https://brainly.com/question/32274064#

#SPJ4

Match each activity to a primary energy system
Half marathon
100 meter swim
weight lifting
Glycolytic
ATP-PC
Aerobic

Answers

Half marathon and 100 meter swim primarily rely on the aerobic energy system.

Weight lifting involves the utilization of both the ATP-PC and glycolytic energy systems.

Activity: Half marathon

Primary Energy System: Aerobic

Activity: 100 meter swim

Primary Energy System: Aerobic

Activity: Weight lifting

Primary Energy System: ATP-PC (Phosphagen) and Glycolytic (Anaerobic)

- Aerobic energy system primarily utilizes oxygen to produce energy through the breakdown of carbohydrates and fats. Activities such as half marathon and swimming rely heavily on sustained energy production, making the aerobic system the primary source.

- ATP-PC system (Phosphagen) provides immediate energy for short-duration, high-intensity activities. Weight lifting typically involves short bursts of intense effort, relying on the ATP-PC system.

- Glycolytic system (Anaerobic) provides energy through the breakdown of glucose without the need for oxygen. Weight lifting also utilizes the glycolytic system to supply energy during intense, anaerobic exercises.

Learn more about energy visit:

https://brainly.com/question/13881533

#SPJ11

A conducting sphere of radius 0.01 m has a charge of 1.0 times 10^-9 C deposited on it. The magnitude of the electric field just outside the surface of the sphere is. 0 N/C 450 N/C 900 N/C 4500 N/C Positive charge Q is placed on a conducting spherical shell with inner radius R_1 and outer radius R_2. A point charge q is placed at the center of the cavity. The force on the charge q is. Qq/4 pi epsilon_0 R_1^2 Qq/4 pi epsilon_0 (R_2^2 - R_1^2) Qq/4 pi epsilon_0 R_2^2 P Qq/4 pi epsilon_0 (R_2^2 + E_1^2) 0 positive charge Q is placed on a conducting spherical shell with inner radius R_1 and outer radius R_2. A point charge q is placed at the center of the cavity. The magnitude of the electric field at a point outside the shell, a distance r from the center, is: Q/4 pi epsilon_0 R_1^2 Q/4 pi epsilon_0 (R_1^2 - r^2) q/4 pi epsilon_0 r^2 (q + Q)/4 pi epsilon_0 (R_1^2 - r^2) Positive charge Q is placed on a conducting spherical shell with inner radius R_1 and outer radius R_2. The electric field at a point r < R_1 is:: Q/4 pi epsilon_0 R_1^2 Q/4 pi epsilon_0 (R_1^2 - r^2) Q/4 pi epsilon_0 r^2 0 Q/4 pi epsilon_0 (R_1^2 + r^2)

Answers

The electric field at a point inside the shell, where r < R_1, is zero. Therefore, the correct option is 0.The electric field at a point outside the shell, a distance r from the center, is given by the equation E = Q/4πε_0r^2, where Q is the charge on the shell and r is the distance from the center.

The magnitude of the electric field just outside the surface of a conducting sphere with radius 0.01 m and charge 1.0 × 10^-9 C is given by the equation E = Q/4πε_0r^2, where Q is the charge on the sphere, ε_0 is the permittivity of free space, and r is the distance from the center of the sphere. Plugging in the given values, we get E = (1.0 × 10^-9 C)/(4πε_0(0.01 m)^2) ≈ 4500 N/C.  For the force on a point charge q placed at the center of a conducting spherical shell with inner radius R_1 and outer radius R_2 and positive charge Q, the correct option is Qq/4πε_0(R_2^2 - R_1^2).

To know more about electric field visit :-

https://brainly.com/question/11482745

#SPJ11

a particular ion of oxygen is composed of 8 protons, 10 neutrons, and 7 electrons. in terms of the elementary charge , what is the total charge of this ion?

Answers

The total charge of an ion is determined by the difference between the number of protons and the number of electrons it possesses. Protons have a positive charge, while electrons have a negative charge.

The elementary charge, denoted as e, is the charge of a single electron.

In the given case, the oxygen ion has 8 protons and 7 electrons. Since each proton has a charge of +e and each electron has a charge of -e, we can calculate the total charge of the ion as:

Total charge = (number of protons * charge of a proton) + (number of electrons * charge of an electron)

= (8 * +e) + (7 * -e)

= 8e - 7e

= e

Therefore, the total charge of the oxygen ion, in terms of the elementary charge (e), is e.

To know more about ions, visit:

brainly.com/question/14982375

#SPJ11

Other Questions
Evaluate the derivative of the function. y = sec^(-1) (9 In 8x) dy/dx = Don Ricardo. Let him answer for himself. Then I will decide what to do with him.Juanito (gathering all his courage). Yes, she did tell me to leave. But . . . but I am in the world seeking my fortune and I am looking for work. Is there any work for me to do here?Don Ricardo. Seeking your fortune! They always say that, don't they, Blanca Flor. Well, I will give you the same chance I have given others. For each of three days, I will give you a job. If in three days you have completed the jobs, then you may leave. If not, then you will work here with me until you are dead. What do you say, fortune-seeker?Which detail helps you determine that the passage is a drama rather than text from a novel or story?Don Ricardo speaks directly to Juanito and Blanca Flor.The text contains examples of dialogue.The excerpt contains stage directions.The text presents a problem between characters. Research the construct of strategic flexibilityWho introduced this construct? (Provide a full citation)Provide this constructs definition.- Strategic flexibility is the capability of an organization to respond to major changes that take place in its external environment by committing the resources necessary to respond to those changes.Provide a title of one recently published research paper (published after 2018) that investigates the organizational effects of strategic flexibility.Based on past literature, briefly explain why this construct could be important for your company. what are the different types of nonprofit organizations Which plasma constituent is the main contributor to osmotic pressure?A) alpha globulins B) beta globulins C) albumin D) fibrinogen (10 points) Suppose a virus spreads so that the number N of people infected grows tially with time t. The table below shows how many days it takes from the initial to have various numbers of cases. t=# of days 36 63 N=# of cases 1 million 8 million How many days since the initial outbreak until the virus infects 40 million people? ( to the nearest whole number of days) in the next turmeric product team meeting, you begin discussing the integrated marketing communications (imc) plan. although the budget has not been finalized, the team feels that they will not have enough funding to include every promotional tool in the imc plan. given what you know about the strengths and weaknesses of the promotional elements available to in fine fettle and the fact that the meal replacement bar is a new product launch for the company, which element would you recommend eliminating from the integrated marketing communications plan? expansionary monetary policy will have what effect on the components of aggregate demand? According to the studies reviewed in the text, which statement is not true about police officer recruitment and performance?a) Recruitment practices can have an impact on officer performance.b) The use of cognitive ability tests can predict job performance for police officers.c) Officers who are better educated tend to have higher job performance.d) Gender and race do not affect police officer job performance. Factor completely. Remember you will first need to expand the brackets, gather like termsand then factor.a) (x + 4)^2 - 25b)(a-5)^2-36 Would using the commutative property of addition be a good strategy for simplifying 35+82 +65? Explain why or why not. 1. DETAILS MY NOTES ASK YOUR TEACHER Suppose that f(4) = 2 and f'(4) = -3. Find h'(4). Round your answer to two decimal places. (a) h(x) = = (3x? + - 5ln (f(x)) ? h'(4) = (b) 60f(x) h(x) = 2x + 3 h'(4 Show all work please!Solve the initial value problem dy dt = -5/7, y(1) = 1. (Use symbolic notation and fractions where needed.) y = help (decimals) = = 13 find: (1 point) Given that f"(x) = cos(2), f'(7/2) = 5 and f(1/ a preschool child's expressive vocabulary is estimated to range from An 80 kg astronaut has gone outside his space capsule to do some repair work. Unfortunately, he forgot to lock his safety tether in place, and he has drifted 5.0 m away from the capsule. Fortunately, he has an 850 W portable laser with fresh batteries that will operate it for 1.0 hr. His only chance is to accelerate himself toward the space capsule by firing the laser in the opposite direction. He has a 10.1 hr supply of oxygen. How long will it take him to reach the capsule? Calculate the line integral /w + V1 + a2)dx + 3rdy, where C consists of five line segments: from (1,0) to (2,0), from (2,0) to (2,1), from (2,1) to (-2,1), from (-2,1) to (-2, -2), and from (-2, - 2) to (1, -2). Hint: Use the Green's Theorem. Consider the function f(x)=x - 2 on the interval [1,9]. Using the Mean Value Theorem we can conclude that: The Mean Value Theorem does not apply because this function is not continuous on [1,9]. Th Given t - 4 f(x) 1 -dt 1 + cos (t) At what value of x does the local max of f(x) occur? x = (a) Find and identify the traces of the quadric surface x2 + y2 ? z2 = 25given the plane.x = kFind the trace.Identify the trace.y=kFind the trace.Identify the trace.z=kFind the traceIdentify the trace. compounds a and b are volatile liquids with pure vapor pressures of 266 torr and 444 torr respectively, at 25 oc. equal moles of a and b are mixed at 25 oc to form a solution which has a vapor pressure or 325 torr. which of the following statements is consistent with these observations