Answer:
the speed of the mass when it is halfway to the equilibrium position is 1.26 m/s
Explanation:
Given that;
mass of the object m = 1.20 kg
period of oscillation = 0.750 s
Amplitude ( A/x) = 15.0 cm = 0.15 m
now;
a) Determine the oscillation frequency;
oscillation frequency f = 1/T
we substitute
f = 1 / 0.750 s
f = 1.33 Hz
Therefore, the oscillation frequency is 1.33 Hz
b) Determine the spring constant;
we solve for spring constant from the following expression;
T = 2π√(m/k)
k = 4π²m / T²
so we substitute
k = (4π² × 1.20) / (0.750)²
k = 47.3741 / 0.5625
k = 84.22 N/m
Therefore, the spring constant is 84.22 N/m
c) determine the speed of the mass when it is halfway to the equilibrium position
So, at equilibrium, the energy is equal to K.E
such that;
1/2mv² = 1/2kx²
mv² = kx²
v² = kx² / m
v = √( kx²/m)
we substitute
v = √( 84.22×(0.15 m)²/ 1.2 )
v = √( 1.89495 / 1.2 )
v = √ 1.579125
v = 1.26 m/s
Therefore, the speed of the mass when it is halfway to the equilibrium position is 1.26 m/s
A 4-stroke heat engine in an automobile is
used to
A convert mechanical energy into heat
energy.
B convert heat energy into mechanical
energy.
с convert steam into solar energy.
D convert chemical energy into electrical
energy.
Answer:
b
Explanation:
convert heat energy into mechanical
Please help! This is due in 10 minutes
Answer:
Atom - the basic particle of matter
Density - calculated from measurements of mass and volume
Motion - calculated from measurements of distance and time
Energy - can change form and move matter
Matter - the scientific word for stuff
Hope this helps! Please mark brainliest if correct :D
A car initially traveling 7 m/s speeds up uniformly at a rate of 3 m/s2 until it reaches a velocity of 22 m/s. How much time did it take the car to reach this final velocity?
Answer:
t = 5 s
Explanation:
Data:
Initial Velocity (Vo) = 7 m/sAcceleration (a) = 3 m/s²Final Velocity (Vf) = 22 m/sTime (t) = ?Use formula:
[tex]\boxed{t=\frac{Vf - Vo}{a}}[/tex]Replace:
[tex]\boxed{t=\frac{22\frac{m}{s} -7\frac{m}{s}}{3\frac{m}{s^{2}}}}[/tex]Solve the subtraction of the numerator:
[tex]\boxed{t=\frac{15\frac{m}{s}}{3\frac{m}{s^{2}}}}[/tex]It divides:
[tex]\boxed{t=5\ s}[/tex]How much time did it take the car to reach this final velocity?
It took a time of 5 seconds.
1. li took 2 } seconds for a car's vclocity to change from 20 m/s to 15 m/s. The mass of the car was 1370 kg. What force was required to cause the acceleration? (Hint: First calculate the acceleration.
Answer:
Do you still need help??
Explanation:
6.
ribbon
AA
SON
120 N
Two teams of students are competing in a tug-o-war contest, as shown in the
picture above. How does the ribbon move?
Answer:
The ribbon will move to the right.
Explanation:
To know the the correct answer to the question, we shall determine the net force and direction. This can be obtained as follow:
Force to the right (Fᵣ) = 120 N
Force to the left (Fₗ) = 80 N
Net force (Fₙ) =?
Fₙ = Fᵣ – Fₗ
Fₙ = 120 – 80
Fₙ = 40 N to the right.
From the calculation made above, the net force is 40 N to the right. Thus, the ribbon will move to the right.
A football of mass 2.5kg is lifted up to the top of a cliff that is 180m high. How much
potential energy does the football gain?
The potential energy of the football with mass 2.5 kg which is lifted up to the top of a cliff is 4410 Joules.
What is Potential energy?Potential energy is the stored energy which depends upon the relative position of the various parts of a system of objects. Potential energy is the product of mass of the object, acceleration due to gravity, and the height. The SI unit of potential energy is Joule (J).
PE = m × g × h
PE = Potential energy,
m = mass of the object,
g = acceleration due to gravity,
h = height
PE = 2.5 × 9.8 × 180
PE = 4410 Joules
Therefore, the potential energy of the football is 4410 Joules.
Learn more about Potential energy here:
https://brainly.com/question/24284560
#SPJ1
A pendulum has a period of 5.14s and a length of 0.25m. What is the acceleration
due to gravity? *
Answer:
Acceleration due to gravity, g = 2.68m/s²
Explanation:
Given the following data;
Period = 5.14s
Length = 0.25m
To find acceleration due to gravity, g;
[tex] Period, T = 2 \pi \sqrt {lg} [/tex]
Substituting into the equation, we have;
[tex] 5.14 = 2*3.142 \sqrt {0.25g} [/tex]
[tex] 5.14 = 6.284 \sqrt {0.25g} [/tex]
[tex] \frac {5.14}{6.284} = \sqrt {0.25g} [/tex]
[tex] 0.8180 = \sqrt {0.25g} [/tex]
Taking the square of both sides
[tex] 0.8180^{2} = 0.25g [/tex]
[tex] 0.6691 = 0.25*g[/tex]
[tex] g = \frac {0.6691}{0.25} [/tex]
Acceleration due to gravity, g = 2.68m/s²
plsss answer this plsss answer this plsss answer this plsss answer this
Answer:
I dont see file
dndndndbnfbfbfbfbfbf
Answer:
ye ek rod h or electric ⚡ field h P point
What is the correct description for kinetic energy?Immersive Reader
(1 Point)
the energy an object has because of it temperature
the energy an object has because it is moving
the energy stored in an object because of its position
the energy stored in an object when you stretch or squash it
Answer:
The energy an object has because it is moving
Explanation:
It has been a while since I have talked about kinetic energy so I can't give you an explanation why that answer is right but it is.
Two thin slits with separation of .0250mm are placed over monochromatic orange laser light at 610.nm. What is the small angle measurement from the central maximum (zero degrees, inline with the source) to the first maximum
Answer:
the small angle measurement from the central maximum is
Explanation:
The computation of the small angle measurement is as follows:
The constructive interference condition is
[tex]d \sin \theta = m \lambda \\\\Now \\\\\theta = sin^{-1} (\frac{\lambda}{d}) \\\\= sin^{-1}(\frac{610\times10^{-9}}{0.0250\times10^{-3}} )\\\\= 1.40^{\circ}[/tex]
hence the small angle measurement from the central maximum is [tex]1.40^{\circ}[/tex]
What are used to measure temperature.
Answer:
A thermometer is an instrument that measures temperature.
Explanation:
A toy car accelerates uniformly from rest at a constant rate. The car travels 1.0 meters in 1.0 seconds. The acceleration of the car is ________ meters per second squared.
Answer:
a=1m/s^2
Explanation:
1÷1÷1=1m/s^2
Please answer the question
Answer:
D
Explanation:
He walked a shorter distance, she walked a longer distance but got that wing thingies
Which of the following is a physical quantity that has a magnitude but not
direction?
- vector
- frame of reference
- scalar
- resultant
Answer:
Scalar
Explanation:
A scalar quantity is a physical quantity that has magnitude but no directional attribute.
An example of a scalar is speed and distance.
A vector is a physical quantity that has both magnitude and direction.
An example is displacement and velocity.
Scalar has only the magnitude value specified and nothing else.
A student claims an object in motion must experience a force to stay in motion. Do you agree or disagree?
Answer:
agree because there is always a force that causes motion..
Two ice skaters approach each other at right angles. Skater A has a mass of 68.2 kg and travels in the x direction at 2.48 m/s. Skater B has a mass of 34.4 kg and is moving in the y direction at 1.18 m/s. They collide and cling together. Find the final speed of the couple. Answer in units of m/s.
Answer:
1.70 m/s
Explanation:
The computation of the final speed of the couple is shown below:
initial momentum of A is
= mv
= 68.2 × 2.48
= 169.136 kg
And, the initial momentum of B is
= mv
= 34.4 × 1.18
= 40.592 kg
Now magnitude is
= sqrt( A^2 + B^2)
= sqrt( 28,606.99 + 1,647.71)
= 173.94
Now the final speed is
= 173.94 ÷ (68.2 + 34.4)
= 1.70 m/s
Review Conceptual Example 6 as background for this problem. A car is traveling to the left, which is the negative direction. The direction of travel remains the same throughout this problem. The car's initial speed is 17.8 m/s, and during a 4.68-second interval, it changes to a final speed of (a)23.5 m/s and (b)15.3 m/s. In each case, find the acceleration (magnitude and algebraic sign).
Answer:
(a) 1.21 m/s² (b) 1.75 m/s²
Explanation:
The initial speed of the car, u = 17.8 m/s
Case 1.
Final speed of the car, v = 23.5 m/s
Time, t = 4.68-s
Acceleration = rate of change of velocity
[tex]a=\dfrac{23.5 -17.8 }{4.68}\\\\a=1.21\ m/s^2[/tex]
Case 2.
Final speed of the car, v = 15.3 m/s
[tex]a=\dfrac{23.5 -15.3}{4.68}\\\\a=1.75\ m/s^2[/tex]
Hence, this is the required solution.
Acceleration is the change in the velocity of a body with time.
What is acceleration?The term acceleration is the change in the velocity of a body with time. We have to find the acceleration in two separate cases;
Case 1;
a = -(23.5 m/s - 17.8 m/s)/4.68-s
a = -1.2 m/s^2
Case 2;
a = -(15.3 m/s - 17.8 m/s)/4.68-s
a = 0.53 ms-2
Learn more about acceleration: https://brainly.com/question/12134554
If the car has a mass of 0.2 kg, the ratio of height to width of the ramp is 12/75, the initial displacement is 2.25 m, and the change in momentum is 0.58 kg*m/s, how far will it coast back up the ramp before changing directions
Answer:
l = 0.548 m
Explanation:
For this exercise we compensate by finding the speed of the car
p = m v
v = p / m
v = 0.58 / 0.2
v = 2.9 m / s
this is how fast you get to the ramp, let's use conservation of energy
starting point. Lowest point
Em₀ = K = ½ m v²
final point. Point where it stops on the ramp
[tex]Em_{f}[/tex] = U = m g h
mechanical energy is conserved
Em₀ = Em_{f}
½ m v² = m g h
h = [tex]\frac{m v^2}{2 g}[/tex]
let's calculate
h = [tex]\frac{0.2 \ 2.9^2}{2 \ 9.8}[/tex]
h = 0.0858 m
to find the distance that e travels on the ramp let's use trigonometry, we look for the angle
tan θ = y / x
tan θ = 12/75 = 0.16
θ = tan⁻¹ 0.16
θ = 9º
therefore
sin 9 = h / l
l = h / sin 9
l = 0.0858 / sin 9
l = 0.548 m
Which formula is used to find an objects acceleration
Answer:
a=∆v/∆t
Explanation:
The definition of Acceleration is the change in velocity in a given time. So this means you first calculate ∆v (Change in velocity), and you calculate ∆t which is the time taken to apply that change in velocity. Then you find a= ∆v/∆t. This gives us the equation of Acceleration.
Answer:
C. a=∆v/∆tExplanation:
Please Help! Will mark brainliest.
Answer:W = m*g*h
19*9.8*32.4 = 6,032.9 rounded
honestly, I do not know if this is correct so please don't come back at me
hopefully this helps
Explanation: [do the following, if you think I am wrong]
just pick a formula,
plug in the number to the mass, gravity, and height
than multiply
get your answer, but don't forget to round to the nearest tenth
To understand the behavior of the electric field at the surface of a conductor, and its relationship to surface charge on the conductor. A conductor is placed in an external electrostatic field. The external field is uniform before the conductor is placed within it. The conductor is completely isolated from any source of current or charge.
Answer:
Explanation:
The electric field inside of a conductor is 0 because the conduction electrons are pushed to the outer edges of the conductor. The surface of the conductor still has charge.
Pls help!!
1 example of a conductor and 1 example of a insulator in your EVERYDAY world.
Answer:
here
Explanation:
Examples of insulators include plastics, Styrofoam, paper, rubber, glass and dry air.
Examples of conductors include metals, aqueous solutions of salts
What quantity measures the amount of space an object occupies?
A. Volume B.Temperature C. Mass D. Density
Answer:
mas
Explanation:
mass is the amount of space something occupies.
What does Fgrav or Fg mean when its next to a vector arrow?
Could I get help on this question please
Answer:
124.51 m
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 49.4 m/s
Final velocity (v) = 0 m/s (at maximum height)
Maximum height (h) =?
NOTE: Acceleration due to gravity (g) = 9.8 m/s²
The maximum height to which the cannon ball attained before falling back can be obtained as illustrated below:
v² = u² – 2gh ( since the ball is going against gravity)
0² = 49.4² – (2 × 9.8 × h)
0 = 2440.36 – 19.6h
Collect like terms
0 – 2440.36 = –19.6h
–2440.36 = –19.6h
Divide both side by –19.6
h = –2440.36 / –19.6
h = 124.51 m
Therefore, maximum height to which the cannon ball attained before falling back is 124.51 m
5. An astronaut has a mass of 65kg where the gravitational field strength is 10N/kg
a. Calculate the weight of the astronaut on earth
[3]
Answer: a) weight on Earth = mass of the object and gravity n the Earth. = 65*10 = 650 kg.
Explanation:
An astronaut has a mass of 65 kg on Earth where the gravitational field strength is 10 N kg A calculate the astronaut's weight on Earth
hope this helps :)
Answer:
650
Explanation:
use the equation
weight = gm
A 7300 kg rocket blasts off vertically from the launch pad with a constant upward acceleration of 2.20 m/s2 and feels no appreciable air resistance. When it has reached a height of 575 m , its engines suddenly fail so that the only force acting on it is now gravity. Part A What is the maximum height this rocket will reach above the launch pad
Answer:
Explanation:
We shall first calculate the velocity at height h = 575 m .
acceleration a = 2.2 m /s²
v² = u² + 2 a s
u is initial velocity , v is final velocity , s is height achieved
v² = 0 + 2 x 2.2 x 575
v = 50.3 m /s
After 575 m , rocket moves under free fall so g will act on it downwards
If it travels further by height H
from the relation
v² = u² - 2 g H
v = 0 , u = 50.3 m /s
H = ?
0 = 50.3² - 2 x 9.8 H
H = 129.08 m
Total height attained by rocket
= 575 + 129.08
= 704.08 m .
what is a Lever?
what is wedge
what is a inclined Plane/screw
what is a wheel and axle
what is a Pulley?
Answer:lever
Explanation:
What term is used to describe DNA Replication?
Conservative
Un-conservative
Non-conservative
Semi-conservative
Answer:
Semi-conservative
Explanation:
Each strand of the original DNA molecule serves as a template for the production of its counterpart
which newton's laws applies to a slinky?
PLEASE HELP !!
When a Slinky sits atop a staircase, gravity acts on the toy, keeping it still. Knock over the Slinky, and Newton's second law comes into play. As middle school physics class may have taught you, this law states that providing force to an object increases its acceleration.
hopes this helps uh ❣
Answer:
We know from Newton's First Law of motion that an object at rest stays at rest unless acted upon by an external force. So in the case of the slinky, that is exactly why the bottom of the slinky does not move.
Explanation: