In part (a), we can solve it by equating the coefficients of s, t, u, and v on both sides. In part (b),This problem involves finding a linear combination of the given primes that sums to zero. In part (c), involves finding a linear combination of three integers that sums to zero.
(a) For finding integers s, t, u, and v that satisfy the equation 1485s + 952t = 690u + 539v, we can rewrite the equation as 1485s - 690u = 539v - 952t. This equation represents a linear combination of two vectors, where the coefficients of s, t, u, and v are fixed. To find the integers that satisfy the equation, we can use techniques such as the Euclidean algorithm or Gaussian elimination to solve the system of linear equations formed by equating the coefficients on both sides.
(b) For part (b), we need to integers a, b, c, and d such that 211a + 307b + 401c + 503d = 0. This problem involves finding a linear combination of the given primes (211, 307, 401, 503) that sums to zero. We can consider this as a system of linear equations, where the coefficients of a, b, c, and d are fixed. By solving this system of equations, we can find the values of a, b, c, and d that satisfy the equation.
(c) In part (c), we are asked solve the integers a, b, and c such that 211a + 307b + 401c = 0. This problem is similar to part (b), but involves finding a linear combination of three integers that sums to zero. We solve this problem by solving the system of linear equations formed by equating the coefficients on both sides.
To learn more about coefficients click here
brainly.com/question/31972343
#SPJ11
a) Sketch indicated level curve f (x, y) =C for given level C.
f (x, y) = x²-3x+4-y, C=4
b) The demand function for a certain type of pencil is D₁(P₁, P₂) = 400-0.3p₂¹+0.6p₂²
while that for a second commodity is D₂(P₁P₂) = 400+0.3p₁²-0.2pz
is the second commodity more likely pens or paper, show using partial derivates?
From the analysis, we can conclude that the second commodity is more likely to be pens.
(a) To sketch the indicated level curve f(x, y) = C for the given level C = 4, we need to find the equation of the curve by substituting C into the function. Given: f(x, y) = x² - 3x + 4 - y. Substituting C = 4 into the function:
4 = x² - 3x + 4 - y. Simplifying the equation: x² - 3x - y = 0
Now we have the equation of the level curve. To sketch it, we can plot points that satisfy this equation and connect them to form the curve. (b) To determine whether the second commodity is more likely to be pens or paper using partial derivatives, we need to compare the partial derivatives of the demand functions with respect to the respective commodity prices. Given: D₁(P₁, P₂) = 400 - 0.3P₂ + 0.6P₂², D₂(P₁, P₂) = 400 + 0.3P₁² - 0.2P₂
We'll compare the partial derivatives ∂D₁/∂P₂ and ∂D₂/∂P₂. ∂D₁/∂P₂ = -0.3 + 1.2P₂, ∂D₂/∂P₂ = -0.2. Since the coefficient of P₂ in ∂D₂/∂P₂ is a constant (-0.2), it does not depend on P₂. On the other hand, the coefficient of P₂ in ∂D₁/∂P₂ is not constant (1.2P₂) and depends on the value of P₂. From this analysis, we can conclude that the second commodity is more likely to be pens.
To learn more about derivatives, click here: brainly.com/question/2159625
#SPJ11
2. Consider the function f(x)=x² - 6x³ - 5x². (a) Find f'(x), and determine the values of a for which f'(x) = 0, for which f'(x) > 0, and for which f'(x) < 0. (b) For which values of r is the function f increasing? Decreasing? Why? (c) Find f"(x), and determine the values of x for which f"(x) = 0, for which f"(x) > 0, and for which f"(x) < 0. (d) For which values of r is the function f concave up? Concave down? Why? (e) Find the (x, y) coordinates of any local maxima and minima of the function f. (f) Find the (x, y) coordinates of any inflexion point of f. (g) Use all of the information above to sketch the graph of y=f(x) for 2 ≤ x ≤ 2. (h) Use the Fundamental Theorem of Calculus to compute [₁1(x) f(x) dr. Shade the area corresponding to this integral on the sketch from part (g) above.
a) two solutions: x = 0 and x = -4/9.
b) It is decreasing when -4/9 < x < 0 and x > 4/9.
c) For f"(x) < 0, we find that f"(x) < 0 when x > -2/9.
d) f is concave up when x < -2/9 and concave down when x > -2/9.
e) the local minimum is approximately (0, 0) and the local maximum is approximately (-4/9, 0.131).
f) one inflection point at x = -2/9.
(a) To find f'(x), we differentiate f(x) with respect to x:
f'(x) = 2x - 18x² - 10x
To determine the values of a for which f'(x) = 0, we solve the equation:
2x - 18x² - 10x = 0
-18x² - 8x = 0
-2x(9x + 4) = 0
This equation has two solutions: x = 0 and x = -4/9.
To determine where f'(x) > 0, we analyze the sign of f'(x) in different intervals. The intervals are:
(-∞, -4/9), (-4/9, 0), and (0, +∞).
By plugging in test points, we find that f'(x) > 0 when x < -4/9 and 0 < x < 4/9.
For f'(x) < 0, we find that f'(x) < 0 when -4/9 < x < 0 and x > 4/9.
(b) The function f is increasing when f'(x) > 0 and decreasing when f'(x) < 0. Based on our analysis in part (a), f is increasing when x < -4/9 and 0 < x < 4/9. It is decreasing when -4/9 < x < 0 and x > 4/9.
(c) To find f"(x), we differentiate f'(x):
f"(x) = 2 - 36x - 10
To determine the values of x for which f"(x) = 0, we solve the equation:
2 - 36x - 10 = 0
-36x - 8 = 0
x = -8/36 = -2/9
For f"(x) > 0, we find that f"(x) > 0 when x < -2/9.
For f"(x) < 0, we find that f"(x) < 0 when x > -2/9.
(d) The function f is concave up when f"(x) > 0 and concave down when f"(x) < 0. Based on our analysis in part (c), ff is concave up when x < -2/9 and concave down when x > -2/9.
(e) To find local maxima and minima, we need to find critical points. From part (a), we found two critical points: x = 0 and x = -4/9. We evaluate f(x) at these points:
f(0) = 0² - 6(0)³ - 5(0)² = 0
f(-4/9) = (-4/9)² - 6(-4/9)³ - 5(-4/9)² ≈ 0.131
Thus, the local minimum is approximately (0, 0) and the local maximum is approximately (-4/9, 0.131).
(f) An inflection point occurs where the concavity changes. From part (c), we found one inflection point at x = -2/9.
(g) Based on the information above, the sketch of y = f(x) for 2 ≤ x ≤ 2 would include the following features: a local minimum at approximately (0, 0), a local maximum at approximately (-4/9, 0.131), and an inflection point at approximately (-2/9, f(-2/9
To learn more about equation click on:brainly.com/question/29657992
#SPJ11
if a is a 3x3 matrix, b is a 3x4 matrix, and c is a 4 x 2 matrix, what are the dimensions of the product abc?
Hence, the dimensions of the product abc matrix are 3x2.
To determine the dimensions of the product abc, we need to consider the dimensions of the matrices involved and apply the matrix multiplication rule.
Given:
Matrix a: 3x3 (3 rows, 3 columns)
Matrix b: 3x4 (3 rows, 4 columns)
Matrix c: 4x2 (4 rows, 2 columns)
To perform matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix. In this case, matrix a has 3 columns, and matrix b has 3 rows. Therefore, we can multiply matrix a by matrix b, resulting in a matrix with dimensions 3x4 (3 rows, 4 columns).
Now, we have a resulting matrix from the multiplication of a and b, which is a 3x4 matrix. We can further multiply this resultant matrix by matrix c. The resultant matrix has 3 rows and 4 columns, and matrix c has 4 rows and 2 columns. Therefore, we can multiply the resultant matrix by matrix c, resulting in a matrix with dimensions 3x2 (3 rows, 2 columns).
To know more about matrix,
https://brainly.com/question/29986473
#SPJ11
Use Euler's method with step size 0.3 to estimate y(1.5), where y(x) is the solution of the initial-value problem y' = 2x + y², y(0) = 0. y(1.5) =
Using Euler's method with a step size of 0.3, we can estimate the value of y(1.5) for the given initial-value problem y' = 2x + y², y(0) = 0.
Euler's method is an iterative numerical method for approximating solutions to ordinary differential equations. It involves taking small steps along the x-axis and using the derivative at each point to estimate the value of the function at the next point.
To apply Euler's method, we start with the initial condition y(0) = 0 and iterate using the formula:
y(i+1) = y(i) + h*f(x(i), y(i)),
where h is the step size, f(x, y) is the derivative function, x(i) is the current x-value, and y(i) is the current approximation of y.
In this case, the derivative function is f(x, y) = 2x + y². We will start at x = 0 and take steps of size 0.3 until we reach x = 1.5.
Using the given initial condition, we can calculate the approximations of y at each step:
y(0.3) ≈ 0 + 0.3*(20 + 0²) = 0.09,
y(0.6) ≈ 0.09 + 0.3(20.3 + 0.09²) ≈ 0.2163,
y(0.9) ≈ 0.2163 + 0.3(20.6 + 0.2163²) ≈ 0.3847,
y(1.2) ≈ 0.3847 + 0.3(20.9 + 0.3847²) ≈ 0.5927,
y(1.5) ≈ 0.5927 + 0.3(2*1.2 + 0.5927²) ≈ 0.8329.
Therefore, the estimated value of y(1.5) using Euler's method with a step size of 0.3 is approximately 0.8329.
To learn more about Euler's method click here :
brainly.com/question/30699690
#SPJ11
In a survey of 340 drivers from the Midwest, 289 wear a seat belt. In a survey of 300 drivers from the West, 282 wear a seat belt. At a = 0.05, can you support the claim that the proportion of drivers who wear seat belts in the Midwest is less than the proportion of drivers who wear seat belts in the West? You are required to do the "Seven-Steps Classical Approach as we did in our class." No credit for p-value test. 1. Define: 2. Hypothesis: 3. Sample: 4. Test: 5. Critical Region: 6. Computation: 7. Decision:
The test statistic falls in the critical region (z = -3.41 < -1.645), we reject the null hypothesis.
1. Define:
To test whether the proportion of drivers who wear seat belts in the Midwest is less than the proportion of drivers who wear seat belts in the West, we will use a hypothesis test with a 0.05 significance level.
2. Hypothesis:
The hypotheses for this test are as follows:
Null hypothesis: pMidwest ≥ pWest
Alternative hypothesis: pMidwest < pWest
Where p Midwest represents the proportion of Midwest drivers who wear seat belts, and pWest represents the proportion of West drivers who wear seat belts.
3. Sample:
The sample sizes and counts are given:
nMidwest = 340, xMidwest = 289
nWest = 300, xWest = 282
4. Test:
Since the sample sizes are large enough and the samples are independent, we will use a two-sample z-test for the difference between proportions to test the hypotheses.
5. Critical Region:
We will use a one-tailed test with a 0.05 significance level.
The critical value for a left-tailed z-test with α = 0.05 is -1.645.
6. Computation:
The test statistic is given by:
z = (pMidwest - pWest) / sqrt(p * (1 - p) * (1/nMidwest + 1/nWest))
Where p is the pooled proportion:
p = (xMidwest + xWest) / (nMidwest + nWest) = 0.850
Substituting the values:
z = (0.8495 - 0.94) / sqrt(0.85 * 0.15 * (1/340 + 1/300)) = -3.41
7. Decision:
Since the test statistic falls in the critical region (z = -3.41 < -1.645), we reject the null hypothesis.
We have enough evidence to support the claim that the proportion of drivers who wear seat belts in the Midwest is less than the proportion of drivers who wear seat belts in the West.
Know more about test statistic here:
https://brainly.com/question/15110538
#SPJ11
The net income of a certain company increased by 12 percent from 2001 to 2005. The company's net income in 2001 was x percent of the company's net income in 2005. Quantity A Quantity B 88 Quantity A is greater. Quantity B is greater. The two quantities are equal. O The relationship cannot be determined from the information given.
The relationship between Quantity A and Quantity B cannot be determined from the given information.
The question provides information about the percentage increase in net income from 2001 to 2005, but it does not provide any specific values for the net income in either year. Therefore, it is not possible to calculate the exact values of Quantity A or Quantity B.
Let's assume the net income in 2001 is represented by 'y' and the net income in 2005 is represented by 'z'. We know that the net income increased by 12 percent from 2001 to 2005. This can be represented as:
z = y + (0.12 * y)
z = 1.12y
Now, we are given that the net income in 2001 (y) is x percent of the net income in 2005 (z). Mathematically, this can be represented as:
y = (x/100) * z
Substituting the value of z from the earlier equation:
y = (x/100) * (1.12y)
Simplifying the equation, we get:
1 = 1.12(x/100)
x = 100/1.12
x ≈ 89.29
From the above calculation, we find that x is approximately 89.29. However, the question asks us to compare x with 88. Since 89.29 is greater than 88, we can conclude that Quantity A is greater than Quantity B. Therefore, the correct answer is Quantity A is greater.
Learn more about relationship here:
https://brainly.com/question/10679131
#SPJ11
A force of 36 N is required to keep a spring stretched 6 m from the equilibrium position. How much work in Joules is done to stretch the spring 9 m from equilibrium? Round your answer to the nearest hundredth if necessary. Provide your answer below: W =
The work done to stretch the spring 9 m from equilibrium is 486 Joules. To find the work done to stretch the spring 9 m from equilibrium, we can use Hooke's Law.
States that the force required to stretch or compress a spring is directly proportional to the displacement from its equilibrium position. Given that a force of 36 N is required to keep the spring stretched 6 m from equilibrium, we can set up the proportion:
Force 1 / Displacement 1 = Force 2 / Displacement 2
36 N / 6 m = Force 2 / 9 m
Now, we can solve for Force 2:
Force 2 = (36 N / 6 m) * 9 m = 54 N
The force required to stretch the spring 9 m from equilibrium is 54 N.
To calculate the work done, we can use the formula:
Work = Force * Distance
Work = 54 N * 9 m = 486 J
To learn more about work done click here:
brainly.com/question/32236321
#SPJ11
Exercise 5: Establish the following relations between L²(R) and L¹(Rª): (a) Neither the inclusion L²(Rª) C L¹(R) nor the inclusion L¹(R¹) C L²(R¹) is valid. (b) Note, however, that if f is supported on a set E of finite measure and if f L² (R), applying the Cauchy-Schwarz inequality to fXe gives feL¹(R¹), and ||f||1 ≤m(E) ¹/2||f||2.
(a) Neither the inclusion L²(Rª) C L¹(R) nor the inclusion L¹(R¹) C L²(R¹) is valid.(b) However, if a function f is supported on a set E of finite measure and if f belongs to L²(R), then the application of Schwarz inequality to fXe gives feL¹(R¹), and ||f||1 ≤m(E) ¹/2||f||2.
L²(R) is the space of all functions f: R -> C (the field of complex numbers) that are measurable and square integrable, i.e., f belongs to L²(R) if and only if the integral of |f(x)|² over R is finite. This means that [tex]||f||² = ∫ |f(x)|² dx[/tex] is finite, where dx is the measure over R.What is [tex]L¹(Rª)?L¹(Rª)[/tex]is the space of all functions.
f: R -> C that are Lebesgue integrable, i.e., f belongs to L¹(R) if and only if the integral of |f(x)| over R is finite. This means that ||f||¹ = ∫ |f(x)| dx is finite, where dx is the measure over R.For any two complex numbers a and b, the Schwarz inequality says that |ab| ≤ |a||b|. This inequality also holds for any two square integrable functions f and g with respect to some measure dx.
Thus, if f and g belong to L²(R), then we have ∫ |fg| dx ≤ (∫ |f|² dx)¹/2 (∫ |g|² dx)¹/2. This is known as the Schwarz inequality.
The Cauchy-Schwarz inequality is a generalization of the Schwarz inequality that applies to any two vectors in an inner product space. For any vectors u and v in such a space, the Cauchy-Schwarz inequality says that || ≤ ||u|| ||v||, where is the inner product of u and v and ||u|| is the norm of u.If f is supported on a set E of finite measure and if f belongs to L²(R), then the application of Schwarz inequality to fXe gives feL¹(R¹), which means that f times the characteristic function of E (which is supported on E and is 1 on E and 0 elsewhere) belongs to L¹(R).
If f is supported on a set E of finite measure and if f belongs to L²(R), then the application of Schwarz inequality to fXe gives[tex]||f||1 ≤m(E) ¹/2||f||2.[/tex]Here, ||f||1 is the L¹-norm of f (i.e., the integral of |f| over R) and ||f||2 is the L²-norm of f (i.e., the square root of the integral of |f|² over R). The constant m(E) is the measure of E (i.e., the integral of the characteristic function of E over R), and ¹/2 denotes the square root.
To know more about Schwarz inequality visit:
https://brainly.com/question/31423483
#SPJ11
For a system with the following mass matrix m and stiffness
matrix k and normal modes X, using modal analysis, decouple the
equations of motion and find the solution in original
coordinates. marks : 8
(m)=m[1 0] (k)= [3 -2]
0 2 -2 2
x2=[1]
-0.366
x2=[1]
1.366
The given mass matrix is 2x2 with values m[1 0], and the stiffness matrix is also 2x2 with values k[3 -2; -2 2]. Additionally, the normal modes X are provided as a 2x2 matrix with values [1 -0.366; -0.366 1.366]. The task is to decouple the equations of motion and find the solution in the original coordinates.
To decouple the equations of motion, we start by transforming the system into modal coordinates using the normal modes. The modal coordinates are obtained by multiplying the inverse of the normal modes matrix with the original coordinates. Let's denote the modal coordinates as q and the original coordinates as x. Thus, q = X^(-1) * x.
Next, we substitute q into the equations of motion, which are given by m * x'' + k * x = 0, to obtain the equations of motion in modal coordinates. This results in m * X^(-1) * q'' + k * X^(-1) * q = 0. Since X is orthogonal, X^(-1) is simply the transpose of X, denoted as X^T.
Decoupling the equations of motion involves diagonalizing the coefficient matrices. We multiply the equation by X^T from the left to obtain X^T * m * X^(-1) * q'' + X^T * k * X^(-1) * q = 0. Since X^T * X^(-1) gives the identity matrix, the equations simplify to M * q'' + K * q = 0, where M and K are diagonal matrices representing the diagonalized mass and stiffness matrices, respectively.
Finally, we solve the decoupled equations of motion M * q'' + K * q = 0, where q'' represents the second derivative of q with respect to time. The solution in the original coordinates x can be obtained by multiplying the modal coordinates q with the normal modes X, i.e., x = X * q.
Visit here to learn more about coefficient:
brainly.com/question/1038771
#SPJ11
Each of 100 independent lives purchase a single premium 5 -year deferred whole life insurance of 10 payable at the moment of death. You are given: (i) μ=0.04 (ii) δ=0.06 (iii) F is the aggregate amount the insurer receives from the 100 lives. Using the normal approximation, calculate F such that the probability the insurer has sufficient funds to pay all claims is 0.99. Use the fact that P(Z
N(0,1)
≤2.326)−0.99, where Z
N(0,1)
is the standard normal random variable. Problem 4. [10 marks] The annual benefit premiums for a F$ fully discrete whole life policy to (40) increases each year by 5%; the vauation rate of the interest is i
(2)
=0.1. If De Moivre's Law is assumed with ω=100 and the first year benefit premium is 59.87$, find the benefit reserve after the first policy year.
To calculate the benefit reserve after the first policy year for the fully discrete whole life policy, we need to use the information provided: Annual benefit premiums increase by 5% each year.
Valuation rate of interest is i(2) = 0.1. De Moivre's Law is assumed with ω = 100. First-year benefit premium is $59.87.The benefit reserve after the first policy year can be calculated using the formula for the present value of a whole life policy: Benefit Reserve = Benefit Premium / (1 + i(2)) + Benefit Reserve * (1 + i(2)). Given: Benefit Premium (Year 1) = $59.87. Valuation Rate of Interest (i(2)) = 0.1.
Using these values, we can calculate the benefit reserve after the first policy year: Benefit Reserve = $59.87 / (1 + 0.1) = $54.43. Therefore, the benefit reserve after the first policy year is $54.43.
To learn more about benefit reserve click here: brainly.com/question/32225730
#SPJ11
could you show me this step by step when graphing .
Solve the system of linear equations by graphing. 2x+y=7 4x = -2y-4
This equation (1) represents a line equation with slope of -2 and y-intercept of 7.Now, let's solve equation (2) for y:y = -4 - 2x.
This equation (2) represents a line equation with slope of -2 and y-intercept of -4.By plotting these lines on graph sheet, we get: Graph: The point of intersection of these lines is (3,1).
The given system of linear equation can also be solved by substitution and elimination methods, but the given system can be easily solved by graphing method.
In the graphing method, we plot the two given linear equations on a graph sheet and find their point of intersection, which gives us the values of the variables.
(x, y) = (3,1).
Summary: By solving the given system of linear equation using graphing method, the point of intersection is (3,1) which is the main answer to the given system.
Learn more about slope click here:
https://brainly.com/question/16949303
#SPJ11
For an outdoor concert, a ticket price of $30 typically attracts 5000 people. For each $1 increase in the ticket price, 100 fewer people will attend. The revenue, R, is the product of the number of people attending and the price per ticket. a) Let x represent the number of $1 price increases. Find an equation expressing the 1er total revenue in terms of x. b) State any restrictions on x. Can x be a negative number? Explain. c) Find the ticket price that maximizes 10 revenue.
a) The equation expressing the total revenue in terms of the number of $1 price increases (x) is R(x) = (5000 - 100x)(30 + x).
b) There are restrictions on x. Since each $1 increase in ticket price leads to 100 fewer people attending, the number of people attending cannot be negative. Therefore, x must be limited to values where (5000 - 100x) is greater than or equal to zero. Solving this inequality gives x ≤ 50, meaning x cannot exceed 50. Additionally, it is not meaningful to have a negative number of price increases since we are considering the effect of increasing the ticket price.
c) To find the ticket price that maximizes revenue, we need to determine the value of x that maximizes the revenue function R(x). One way to do this is by finding the critical points of the revenue function. We can take the derivative of R(x) with respect to x and set it equal to zero to find the critical points. Differentiating R(x) = (5000 - 100x)(30 + x) with respect to x gives us R'(x) = -200x + 2000.
Setting R'(x) equal to zero and solving for x, we get -200x + 2000 = 0, which gives x = 10. So, the critical point is x = 10. To determine if this critical point is a maximum, we can check the second derivative of R(x). Taking the second derivative of R(x) gives us R''(x) = -200, which is a constant value. Since R''(x) is negative, the critical point x = 10 corresponds to a maximum revenue.
Therefore, the ticket price that maximizes revenue is obtained by taking the initial price of $30 and increasing it by $1 for 10 times, resulting in a ticket price of $40. At this price, the revenue will be maximized.
Learn more about Differentiating here: brainly.com/question/31383100
#SPJ11
121r The electric power P (in W) produced by a certain battery is given by P = - (r+0.5)²' r is the power a maximum? r= (Simplify your answer.) where r is the resistance in the circuit. For what valu
The power output of the battery is given by the function P = -(r + 0.5)², where 'r' represents the resistance in the circuit. To determine whether the power is at a maximum, we need to find the value of 'r' that maximizes the power function.
To find this value, we take the derivative of the power function with respect to 'r'. The derivative of P with respect to 'r' is dP/dr = -2(r + 0.5). Setting this derivative equal to zero, we have -2(r + 0.5) = 0. Solving for 'r', we find r = -0.5. Therefore, the resistance value that maximizes the power output of the battery is -0.5. When the resistance is equal to -0.5, the power function reaches its maximum value. This means that for any other resistance value, the power output will be lower than the maximum value attained at r = -0.5.
In conclusion, the power output of the battery is maximized when the resistance in the circuit is equal to -0.5.
Learn more about derivative here: brainly.com/question/29144258
#SPJ11
MARKED PROBLEM Suppose the population of a particular endangered bird changes on a yearly basis as a discrete dynamic system. Suppose that initially there are 60 juvenile chicks and 30 [60] Suppose also that the yearly transition matrix is breeding adults, that is Xo = 30 [0 1.25] A = where s is the proportion of chicks that survive to become adults (note 8 0.5 that 0< s <1 must be true because of what this number represents). (a) Which entry in the transition matrix gives the annual birthrate of chicks per adult? (b) Scientists are concerned that the species may become extinct. Explain why if 0 ≤ s< 0.4 the species will become extinct. (c) If s= 0.4, the population will stabilise at a fixed size in the long term. What will this size be?
(a) The entry in the transition matrix that gives the annual birth rate of chicks per adult is the (1, 1) entry.
This entry corresponds to the number of chicks that each adult bird produces on average during the breeding season.
(b) A species will become extinct if the average number of offspring produced by each breeding adult is less than one.
That is, if the dominant eigenvalue of the transition matrix is less than one.
Suppose that the transition matrix A has eigenvalues λ1 and λ2, with corresponding eigenvectors v1 and v2. Let λmax be the maximum of |λ1| and |λ2|.
Then, if λmax < 1, the species will become extinct.
This is because, in the long term, the size of the population will approach zero. If λmax > 1,
the population will grow without bound, which is not a realistic scenario. Therefore, we must have λmax = 1
if the population is to stabilize at a non-zero level. In other words, the species will become extinct if the survival rate s satisfies 0 ≤ s < 0.4.
(c) If s = 0.4, the transition matrix becomes A = [0 0.5; 0.5 0.5], which has eigenvalues λ1 = 0 and λ2 = 1.
The eigenvectors are v1 = [1; -1] and v2 = [1; 1]. Since λmax = 1, the population will stabilize at a fixed size in the long term.
To find this size, we need to solve the equation (A - I)x = 0,
where I is the identity matrix.
[tex]This gives x = [1; 1].[/tex]
Therefore, the population will stabilize at a fixed size of 90, with 45 adults and 45 juveniles.
To know more about transition matrix visit:
https://brainly.com/question/15071670
#SPJ11
Drag and drop the missing term in the box.
∫________- dx = In [sec x + tan x] + c
a. sec x tan x -sec²x
b. sec x tan x - tan²x
c. sec x tan x + tan²x
d. sec x tan x + tan²x
e. sec x tan x + sec²x
The missing term that should be placed in the box is
"e. sec x tan x + sec²x".
This is determined by applying the integral rules and evaluating the integral of the given expression. The integral of sec x tan x is a well-known trigonometric integral, which evaluates to ln|sec x + tan x|. Additionally, the integral of sec²x is known to be tan x. Combining these results, we have the integral of sec x tan x as ln|sec x + tan x| + C, where C is the constant of integration.
Thus, the correct missing term is "e. sec x tan x + sec²x", as it matches the evaluated integral expression.
Learn more about trigonometric integral here: brainly.com/question/31701596
#SPJ11
find the taylor series for f(x) centered at the given value of a. f(x) = 1/x, a = 3 f(x) = [infinity] n = 0 find the associated radius of convergence r. r =
Where the above is given, note that the associated radius of convergence r is 3.
How is this so ?To find the Taylor series for f(x) = 1/x centered at a = 3 , we can use the formula for the Taylor series expansion:
[tex]\[ f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \cdots \][/tex]
First, et's find the derivatives of f( x) .
[tex]\[ f'(x) = -\frac{1}{x^2} \]\[ f''(x) = \frac{2}{x^3} \]\[ f'''(x) = -\frac{6}{x^4} \]\[ f''''(x) = \frac{24}{x^5} \]\[ \vdots \][/tex]
Now, let's evaluate these derivatives at a = 3
[tex]\[ f(3) = \frac{1}{3} \]\[ f'(3) = -\frac{1}{9} \]\[ f''(3) = \frac{2}{27} \]\[ f'''(3) = -\frac{2}{81} \]\[ f''''(3) = \frac{8}{243} \]\[ \vdots \][/tex]
The Taylor series expansion for f(x) = 1/x centered ata = 3 becomes
[tex]\[ \frac{1}{x} = \frac{1}{3} - \frac{1}{9}(x-3) + \frac{2}{27}(x-3)^2 - \frac{2}{81}(x-3)^3 + \frac{8}{243}(x-3)^4 + \cdots \][/tex]
To determine the associated radius of convergence r for this series,we need to find the interval of convergence.
In this case, f(x) = 1/x has a singularity at x = 0.
Therefore, the Taylor series expansion centered at a = 3 will converge for values of x within the interval (0, 6), excluding the endpoints. Hence, the radius of convergence r is 3.
Learn more about radius of convergence:
https://brainly.com/question/30114464
#SPJ4
determine whether the sequence converges or diverges. if it converges, find the limit. (if the sequence diverges, enter diverges.) an = ln(n 3) − ln(n)
the sequence aₙ = ln(n³) - ln(n) diverges.
To determine whether the sequence converges or diverges and find its limit, we will analyze the behavior of the sequence aₙ = ln(n³) - ln(n) as n approaches infinity.
Taking the natural logarithm of a product is equivalent to subtracting the logarithms of the individual factors. Therefore, we can rewrite the sequence as:
aₙ = ln(n³) - ln(n)
= ln(n³ / n)
= ln(n²)
= 2 ln(n)
As n approaches infinity, the natural logarithm of n increases without bound. Therefore, the sequence 2 ln(n) also increases without bound.
Hence, the sequence diverges.
Learn more about sequence here
https://brainly.com/question/31584981
#SPJ4
A population has a mean of 400 and a standard deviation of 90. Suppose a simple random sample of size 100 is selected and is used to estimate μ. Use z- table.
a. What is the probability that the sample mean will be within ±9 of the population mean (to 4 decimals)?
b. What is the probability that the sample mean will be within ±14 of the population mean (to 4 decimals)?
a) the probability that the sample mean will be within ±9 of the population mean is 0.6826.
b) the probability that the sample mean will be within ±14 of the population mean is 0.8893.
Formula used: z = (x - μ) / (σ / √n)
where, x = sample mean, μ = population mean, σ = population standard deviation, n = sample size
(a) We are to find the probability that the sample mean will be within ±9 of the population mean.
z₁ = (x - μ) / (σ / √n)z₂ = (x - μ) / (σ / √n)
where, z₁ = -9, z₂ = 9, x = 400, μ = 400, σ = 90, n = 100
Substitute the given values in the above formulas.
z₁ = (-9) / (90 / √100)
z₁ = -1
z₂ = 9 / (90 / √100)
z₂ = 1
Therefore, the probability that the sample mean will be within ±9 of the population mean is 0.6826.
(b) We are to find the probability that the sample mean will be within ±14 of the population mean.
z₁ = (x - μ) / (σ / √n)
z₂ = (x - μ) / (σ / √n)
where, z₁ = -14, z₂ = 14, x = 400, μ = 400, σ = 90, n = 100
Substitute the given values in the above formulas.
z₁ = (-14) / (90 / √100)
z₁ = -1.5556
z₂ = 14 / (90 / √100)
z₂ = 1.5556
Therefore, the probability that the sample mean will be within ±14 of the population mean is 0.8893.
Learn more about probability at:
https://brainly.com/question/29381779
#SPJ11
y = 10.0489 x ²²-32 15. The half-life of a certain type of soft drink is 7 hours. If you drink 65 milliliters of this drink, the formula y = 65(0.7) tells the amount of the drink left in your system after t hours. How long will it take for there to be only 45.5 milliliters of the drink left in your system?
It will take approximately 4.96 hours for there to be only 45.5 milliliters of the drink left in your system.
Given that,The half-life of a certain type of soft drink is 7 hours.
If you drink 65 milliliters of this drink, the formula y = 65(0.7) tells the amount of the drink left in your system after t hours.
The formula is of the form:y = a(0.7)t Where a = 65 milliliters.t = time in hours at which we want to calculate the amount of the drink left in the system.
The amount of the drink left after t hours = 45.5 milliliters.
Substituting the values in the formula, we get:45.5 = 65(0.7)t.
Taking log on both sides, we get:log(45.5) = log(65) + log(0.7) * t.
Solving for t, we get:t = [log(45.5) - log(65)] / log(0.7)t = 4.96 hours.
Therefore, it will take approximately 4.96 hours for there to be only 45.5 milliliters of the drink left in your system.
#SPJ11
Let us know more about formula : https://brainly.com/question/2382219.
Thinking: 7. If a and are vectors in R³ so that |a| = |B| = 5and |à + b1 = 5/3 determine the value of (3 - 2b) - (b + 4ä). [4T]
The value of (3-2b) - (b+4a) is 32. To calculate the given vector we will have to apply the laws of vector addition, subtraction, and the magnitude of a vector. So, let's first calculate the value of |a + b|. As |a| = |b| = 5, we can say that the magnitude of both vectors is equal to 5.
Therefore, |a + b| = √{(a1 + b1)² + (a2 + b2)² + (a3 + b3)²}
Putting the given values in the above equation, we get
|a + b| = √{(3b1)² + (2b2)² + (4a3)²}
= (5/3)
Squaring on both sides we get 9b1² + 4b2² + 16a3² = 25/9
Given vector (3-2b) - (b+4a) = 3 - 2b - b - 4a
= 3 - 3b - 4a
Now substituting the value of |a| and |b| in the above equation, we get
|(3-2b) - (b+4a)| = |3 - 3b - 4a|
= |(-4a) + (-3b + 3)|
= |-4a| + |-3b + 3|
= 4|a| + 3|b - 1|
= 4(5) + 3(5-1)
= 20 + 12 which values to 32. Therefore, the value of (3-2b) - (b+4a) is 32.
To know more about Laws of vector addition visit-
brainly.com/question/23867486
#SPJ11
Determine whether S is a basis for R3 S={ (0, 3, 2), (4, 0, 3), (-8, 15, 16) } . S is a basis of R3. OS is not a basis of R³.
The vectors in S are linearly independent and span R^3, we can conclude that S = {(0, 3, 2), (4, 0, 3), (-8, 15, 16)} is indeed a basis for R^3.
To determine whether S = {(0, 3, 2), (4, 0, 3), (-8, 15, 16)} is a basis for R^3, we need to check if the vectors in S are linearly independent and if they span the entire space R^3.
1. Linear Independence:
We can check if the vectors in S are linearly independent by setting up the equation a(0, 3, 2) + b(4, 0, 3) + c(-8, 15, 16) = (0, 0, 0) and solving for the coefficients a, b, and c.
The augmented matrix for this system is:
[ 0 4 -8 | 0 ]
[ 3 0 15 | 0 ]
[ 2 3 16 | 0 ]
After performing row operations, we find that the system is consistent with a unique solution of a = b = c = 0. Therefore, the vectors in S are linearly independent.
2. Spanning the Space:
To check if the vectors in S span R^3, we need to verify if any vector in R^3 can be expressed as a linear combination of the vectors in S.
Let's take an arbitrary vector (x, y, z) in R^3. We need to find scalars a, b, and c such that a(0, 3, 2) + b(4, 0, 3) + c(-8, 15, 16) = (x, y, z).
This leads to the system of equations:
4b - 8c = x
3a + 15c = y
2a + 3b + 16c = z
Solving this system, we find that for any (x, y, z) in R^3, we can find suitable values for a, b, and c to satisfy the equations. Therefore, the vectors in S span R^3.
To learn more about vector spaces, click here: brainly.com/question/29991713
#SPJ11
4. A bacteria culture starts with 2000 bacteria. [6 marks total] a) After 6 hours the estimated count is 60 000. How long does it take for the number of bacteria to double? Round your answer to 2 decimal places of an hour. [3 marks] b) Assume the doubling period was half an hour. How long will it take the bacteria population to grow to 90000? Round your answer to 2 decimal places of an hour. [3 marks]
a)Round your answer to 2 decimal places of an hour.
The formula for calculating the amount of bacteria is:
[tex]A = A0 * 2^(t/T)[/tex]where:A0 = initial bacteria count A = bacteria count after time t,T = doubling period or time it takes for the bacteria count to doublet = time .
Let's first find the value of T since it is required to solve for t.
[tex]T = t / log₂(N/N0)[/tex],where :N = final bacteria count = 60000N0 = initial bacteria count = 2000t = 6 hours
[tex]T = 6 / log₂(60000/2000) = 1.4[/tex]4 hours Now we can use this value of T to solve for t when the bacteria count doubles .
The formula for calculating the amount of bacteria is :
[tex]A = A0 * 2^(t/T)[/tex]where:A0 = initial bacteria count A = bacteria count after time tT = doubling period or time it takes for the bacteria count to doublet = time
We need to find the time t when the bacteria count reaches 90000.
Therefore, we can use the formula to solve for t.
[tex]A = A0 * 2^(t/T)2000 * 2^(t/0.5) = 900002^(t/0.5) = 45t/0.5 = log₂(45)t = 0.5 * log₂(45)t = 5.17[/tex] hours
So, it will take 5.17 hours for the bacteria population to grow to 90000. Rounding to 2 decimal places gives 5.17 as the final answer.
To know more about decimal places visit:-
https://brainly.com/question/30650781
#SPJ11
Given that 12 f(x) = x¹²h(x) h( − 1) = 5 h'( − 1) = 8 Calculate f'( − 1).
The value of f'(-1) is -13/3. To calculate f'(-1), we need to find the derivative of the function f(x) and then substitute x = -1 into the derivative.
The given information states that 12f(x) = x^12 * h(x), where h(x) is another function. Taking the derivative of both sides of the equation with respect to x, we have: 12f'(x) = 12x^11 * h(x) + x^12 * h'(x). Now, let's substitute x = -1 into the equation to find f'(-1): 12f'(-1) = 12(-1)^11 * h(-1) + (-1)^12 * h'(-1). Since h(-1) is given as 5 and h'(-1) is given as 8, we can substitute these values: 12f'(-1) = 12(-1)^11 * 5 + (-1)^12 * 8.
Simplifying further: 12f'(-1) = -12 * 5 + 1 * 8. 12f'(-1) = -60 + 8. 12f'(-1) = -52. Finally, divide both sides by 12 to solve for f'(-1): f'(-1) = -52/12. Therefore, the value of f'(-1) is -13/3.
To learn more about derivative, click here: brainly.com/question/2159625
#SPJ11
7. Consider the regression model Y₁ = 3X₁ + U₁, E[U₁|X₂] |=c, = C, E[U²|X₁] = 0² <[infinity], E[X₂] = 0, 0
Given the regression model, [tex]Y₁ = 3X₁ + U₁, E[U₁|X₂] ≠ c, = C, E[U²|X₁] = 0² < ∞, E[X₂] = 0.[/tex]
First, let's recall what a regression model is. A regression model is a statistical model used to determine the relationship between a dependent variable and one or more independent variables.
The model can be linear or nonlinear, depending on the nature of the relationship between the variables. Linear regression models are employed when the relationship is linear.
Now, let's examine the model provided in the question: [tex]Y₁ = 3X₁ + U₁, E[U₁|X₂] ≠ c, = C, E[U²|X₁] = 0² < ∞, E[X₂] = 0.[/tex]
In this model, Y₁ represents the dependent variable, and X₁ is the independent variable. U₁ denotes the error term.[tex]E[U₁|X₂] ≠ c[/tex], = C implies that the error term is not correlated with [tex]X₂. E[U²|X₁] = 0² < ∞[/tex]suggests that the error term has a conditional variance of zero. E[X₂] = 0 states that the mean of X₂ is zero.
To learn more about regression, refer below:
https://brainly.com/question/32505018
#SPJ11
.3. For y = 7.5^x (4 marks) a. b. State whether it is a growth or a decay curve. State the equation of the asymptote. State the range. C. d. State the y-intercept. 4. For y=2(0.75)^x (4 marks) a. State whether it is a growth or a decay curve. b. State the equation of the asymptote. c. State the range. d. State the y-intercept.
The equation is in the form of exponential growth because the base (7.5) is greater than 1.
The equation of the asymptote is y = 0 because as x approaches infinity, y approaches 0. The range of the curve is y > 0 because the curve is always above the x-axis.
b. The y-intercept is when x = 0, y = 7.5⁰ = 1. So, the y-intercept is (0, 1).4. For y = 2(0.75)ˣ,
a. The equation is in the form of exponential decay because the base (0.75) is less than 1.
b. The equation of the asymptote is y = 0 because as x approaches infinity, y approaches 0.
c. The range of the curve is 0 < y < 2 because the curve is always above the x-axis but approaches 0 as x approaches infinity and never exceeds 2.
d. The y-intercept is when x = 0,
y = 2(0.75)⁰ = 2(1) = 2.
So, the y-intercept is (0, 2).
To know more about Equation visit:
https://brainly.com/question/28243079
#SPJ11
Consider the linear transformation T : R4 → R3 defined by
T (x, y, z, w) = (x − y + w, 2x + y + z, 2y − 3w).
Let B = {v1 = (0,1,2,−1),v2 = (2,0,−2,3),v3 = (3,−1,0,2),v4 = (4,1,1,0)} be a basis in R4 and let B′ = {w1 = (1,0,0),w2 = (2,1,1),w3 = (3,2,1)} be a basis in R3.
Find the matrix (AT )BB′ associated to T , that is, the matrix associated to T with respect to the bases B and B′.
The matrix (AT)BB' associated with the linear transformation T with respect to the bases B and B' is:(AT)BB' is
|-2 5 4 3 |
| 3 2 8 12 |
| 5 -9 -2 2 |
The matrix (AT)BB' associated with the linear transformation T, we need to compute the image of each vector in the basis B under the transformation T and express the results in terms of the basis B'.
First, let's calculate the images of each vector in B under T:
T(v₁) = (0 - 1 + (-1), 2(0) + 1 + 2, 2(1) - 3(-1)) = (-2, 3, 5)
T(v₂) = (2 - 0 + 3, 2(2) + 0 + (-2), 2(0) - 3(3)) = (5, 2, -9)
T(v₃) = (3 - (-1) + 0, 2(3) + (-1) + 0, 2(-1) - 3(0)) = (4, 8, -2)
T(v₄) = (4 - 1 + 0, 2(4) + 1 + 1, 2(1) - 3(0)) = (3, 12, 2)
Now, we need to express each of these image vectors in terms of the basis B':
(-2, 3, 5) = a₁w₁ + a₂w₂ + a₃w₃
(5, 2, -9) = b₁w₁ + b₂w₂ + b₃w₃
(4, 8, -2) = c₁w₁ + c₂w₂ + c₃w₃
(3, 12, 2) = d₁w₁ + d₂w₂ + d₃w₃
The coefficients a₁, a₂, a₃, b₁, b₂, b₃, c₁, c₂, c₃, d₁, d₂, d₃, we can solve the following system of equations values satisfying the equation are:
a₁ = -2, a₂ = 3, a₃ = 5
b₁ = 5, b₂ = 2, b₃ = -9
c₁ = 4, c₂ = 8, c₃ = -2
d₁ = 3, d₂ = 12, d₃ = 2
Now, we can assemble the matrix (AT)BB' by arranging the coefficients of each basis vector in B':
(AT)BB' = | -2 5 4 3 |
| 3 2 8 12 |
| 5 -9 -2 2 |
To know more about linear transformation click here :
https://brainly.com/question/24115917
#SPJ4
4. (45 marks) Let S = {(0,0), (0, 1), (1,0), (1, 1)} CR² and consider the vector space RS. a) (10 marks) Show that if 1 (m, n)-(0,1) fi(m, n) 1 (m, n)- (0,0) 0 (m, n) (0,0) fa(m, n) = (0 (m, n) + (0,1) (m, n)-(1,0) 1 fa(m, n)- = fa(m, n) = (m, n) = (1,1) (1,1) 0 (m, n) (1,0) (m, n) the set {f1, 12, 13, 14) is a basis for Rs. b) (5 marks) Show that (f1, f2, f3, f4) is a frame RS. c) (5 marks) For fERS let Lf(m, n) = f(m, m). Show L is a linear map from RS to RS. d) (10 marks) Write down the matrix that represents L in the frame (f1, f2, f3, f4). e) (5 marks) For f, g € RS let 1 β(f,g) = ΣΣ f(m,n)g(m,n) m=0 n=0 Show that is a bilinear form on RS. f) (10 marks) Write down the matrix that represents in the frame (f1, f2, f3, f4)-
a) Proof that {f1, f2, f3, f4} is a basis for RS:Given that, f1 = (0, 0, 0, 1), f2 = (0, 1, 0, 0), f3 = (1, 0, 0, 0), f4 = (1, 1, 1, 1)To show that {f1, f2, f3, f4} is a basis for RS, we can prove that f1, f2, f3, and f4 are linearly independent and that they span RS.Let's first show that {f1, f2, f3, f4} is linearly independent.
Therefore, we need to show that none of the elements can be represented as a linear combination of the others.Let's assume that, af1 + bf2 + cf3 + df4 = 0, for some a, b, c, d in R. This implies that,(0, 0, 0, a + b + c + d) = (0, 0, 0, 0).
Therefore, a + b + c + d = 0.Using the above equation, we can write f4 as a linear combination of f1, f2, and f3,f4 = (-1) f1 + f2 + f3This contradicts our assumption that f1, f2, f3, and f4 are linearly independent. Hence {f1, f2, f3, f4} is linearly independent.Now let's prove that {f1, f2, f3, f4} span RS.Since f1, f2, f3, and f4 have the same dimensions as RS, we just need to show that any vector in RS can be represented as a linear combination of f1, f2, f3, and f4. Any vector in RS can be represented as (a, b, c, d), where a, b, c, and d are real numbers.(a, b, c, d) = a(0, 0, 0, 1) + b(0, 1, 0, 0) + c(1, 0, 0, 0) + d(1, 1, 1, 1)Therefore, {f1, f2, f3, f4} is a basis for RS.b) Proof that (f1, f2, f3, f4) is a frame for RS. A frame is a set of vectors that provide a stable coordinate system. That means the vectors must be well spread out and nearly orthogonal to each other.Therefore, the inner products between these vectors must be nearly zero to avoid near-linear dependence of the vectors. We check that the frame condition is satisfied or not below.f1.f1 = 1, f2.f2 = 1, f3.f3 = 1, f4.f4 = 4f1.f2 = 0, f1.f3 = 0, f1.f4 = 1, f2.f3 = 0, f2.f4 = 1, f3.f4 = 2Since the vectors are all normalized, a lower inner product means the vectors are more nearly orthogonal. It can be observed that (f1, f2, f3, f4) is nearly orthogonal.
Hence (f1, f2, f3, f4) is a frame for RS.c) Proof that L is a linear map from RS to RS.Lf (a1f1 + a2f2 + a3f3 + a4f4) = a1Lf(f1) + a2Lf(f2) + a3Lf(f3) + a4Lf(f4) = a1(0, 0, 0, 0) + a2(0, 0, 0, 0) + a3(1, 1, 0, 0) + a4(1, 1, 0, 0) = (a3 + a4, a3 + a4, 0, 0)
Therefore, L is a linear map from RS to RS.d) The matrix that represents L in the frame (f1, f2, f3, f4) can be given as follows:(0, 0, 1, 1)(0, 0, 1, 1)(0, 0, 0, 0)(0, 0, 0, 0)e) Proof that is a bilinear form on RS. Bilinear form is a function of two vector arguments that is linear in each argument.Let f1 = (a1, b1, c1, d1) and f2 = (a2, b2, c2, d2).Therefore, β(f1, f2) = ΣΣ f1(m, n)f2(m, n) m=0 n=0= a1a2 + b1b2 + c1c2 + d1d2This is a bilinear form on RS.f) The matrix that represents in the frame (f1, f2, f3, f4) can be given as follows:(0, 0, 0, 0)(0, 1, 1, 2)(0, 1, 1, 2)(0, 2, 2, 4)
To know more about linearly independent visit:
https://brainly.com/question/30575734
#SPJ11
Determine whether the lines below are parallel, perpendicular, or neither. - 6x – 2y = -10 y = 3x - 7 #15: Determine whether the lines below are parallel, perpendicular, or neither = y = 2x + 9 X – 2y = -6
The given lines are neither perpendicular nor parallel to each other. Hence, the correct option is option C.
The given equations of lines are -6x - 2y = -10 and y = 3x - 7.
To determine whether the given lines are parallel, perpendicular or neither; we need to convert both equations into a slope-intercept form that is y = mx + b, where m is the slope of the line and b is the y-intercept.
Therefore, y = 3x - 7 is already in slope-intercept form.
Let's convert -6x - 2y = -10 equation into slope-intercept form, which is:-2y = 6x - 10y = -3x + 5
So, the slope of the first line is -3 and the slope of the second line is 2.
As the slopes are different, the lines are not parallel to each other. Also, the product of the slope of both lines is -6 which is not equal to -1.
Therefore, the given lines are neither perpendicular nor parallel to each other. Hence, the correct option is option C.
Know more about equations here:
https://brainly.com/question/29174899
#SPJ11
As age increases, so does the likelihood of a particular disease. The fraction of people x years old with the disease is modeled by f(x) = (a) Evaluate f(20) and f(60). Interpret the results. (b) At w
The probability is 0.375, which means that out of 4 people, one person is likely to have the disease. Given,The fraction of people x years old with the disease is modeled by f(x) = x / (100 + x).
Here, (a) Evaluate f(20) and f(60). Interpret the results.
f(20) = 20 / (100 + 20) results to 0.1667
f(60) = 60 / (100 + 60) results to 0.375
Here, f(20) is the probability that a person who is 20 years old or younger has the disease. Therefore, the probability is 0.1667, which means that out of 6 people, one person is likely to have the disease. On the other hand, f(60) is the probability that a person who is 60 years old or younger has the disease. Therefore, the probability is 0.375, which means that out of 4 people, one person is likely to have the disease.
(b) To find the age at which the fraction of people with the disease is half of its maximum value, we need to substitute
f(x) = 1/2.1/2
= x / (100 + x)50 + 50x
= 100 + x50x - x
= 100 - 505x
= 50x = 10
Hence, the age at which the fraction of people with the disease is half of its maximum value is 10 years.
To know more about Probability visit-
brainly.com/question/32004014
#SPJ11
Let X be a continuous RV with a p.d.f. f(x) and finite E[X]. Denote by h(c) the function defined as h(c) = E|X - c|, C E R. Show that the median m satisfies h(m) = min E|X - c|.
Here the median m is such that P(X < m) = ∫m,-oo f(x) dx = 1/2
The median m satisfies h(m) = min E|X - c|, we need to demonstrate that the expected value of the absolute difference between X and m, E|X - m|, is minimized when m is the median.
Let's denote the cumulative distribution function (CDF) of X as F(x) = P(X ≤ x).
Since we are considering a continuous random variable, the CDF F(x) is a continuous and non-decreasing function.
By definition, the median m is the value of X for which the CDF is equal to 1/2,
or P(X < m) = 1/2.
In other words, F(m) = 1/2.
Now, let's consider another value c in the real numbers.
We want to compare the expected value of the absolute difference between X and m, E|X - m|, with the expected value of the absolute difference between X and c, E|X - c|.
We can express E|X - m| as an integral using the definition of expected value:
E|X - m| = ∫[ -∞, ∞] |x - m| * f(x) dx
Similarly, E|X - c| can be expressed as:
E|X - c| = ∫[ -∞, ∞] |x - c| * f(x) dx
Now, let's consider the function h(c) = E|X - c|.
We want to find the minimum value of h(c) over all possible values of c.
To find the minimum, we can differentiate h(c) with respect to c and set the derivative equal to zero:
d/dx [E|X - c|] = 0
Differentiating under the integral sign, we have:
∫[ -∞, ∞] d/dx [|x - c| * f(x)] dx = 0
Since the derivative of |x - c| is not defined at x = c, we need to consider two cases: x < c and x > c.
For x < c:
∫[ -∞, c] [-f(x)] dx = 0
For x > c:
∫[ c, ∞] f(x) dx = 0
Since the integral of f(x) over its entire support must equal 1, we can rewrite the above equation as:
∫[ -∞, c] f(x) dx = 1/2
∫[ c, ∞] f(x) dx = 1/2
These equations indicate that c is the median of X.
Therefore, we have shown that the median m satisfies h(m) = min E|X - c|. The expected value of the absolute difference between X and m is minimized when m is the median of X.
To know more about median, Visit:
https://brainly.com/question/26177250
#SPJ11