Answer:
hufiui
fihgpfghlfikgergkfkjhfkhjgkffhhh
Explanation:
jjgzgcjxhgygueyuufhfugkhkckgijljhgxjgjgffhgkgjxhxjgjcjckvjgghkhkgjgjfhfhfhffrusufsflslrsyfhldufñlñudtoqdyhjjxkgsgjfktwlyfñujxjxhlxlhdktstedoyñfuyñflldytidoyeyljjcñcjluffñui5woyepurñfuñufldyrajuñdlydstdyñudñydktshñxjcñydiw5uñfitwoyeoyeñufñfuñifjñufhlsyñeifññydoysitaiwtuñdyñdlsyltslsyoyeylsuñdñjjcyldlyslatlysñudidñjdñfjñjjxlhsmzhmzjjdjdlhdñhjdñjdñjddñhflhuñfhxltkds4urayraylraluarularuñstuñtsuñtsultsuñtsuñstñitsñktssistustlulsrustlularyralultalutslutajltsñgskjlgzljg?g o uguhxputxipyfugxiñhxiñhfuñdguldthgksjmgdjmgkhdjlgdjlgd
pduoyditsyafylrayoraourauptautospustistiptsñitsñitsñitsiptsiteitdustuñtsuñtsñitwiñstñitwñitsñstuuñrsoursurosoustjlsrlutejlgsjlstjfsjlgsultsjgzjñgsññkdylfhkñdgjlfshkadmjgsuñstñkydñkydñiykdhiñstñitsuñtsisñtñtieñietñietñiteñiwtñitskñgsiñteuñwrkñsturaluglsuñtwjlfalfjalhadoyfutdllgdñitswtkgsñktjrajtsurwñwñutiñtsiwñtuwñturqlñitwualtayoryarluarlietite
Infrared radiation from young stars can pass through the heavy dust clouds surrounding them, allowing astronomers here on Earth to study the earliest stages of star formation, before a star begins to emit visible light. Suppose an infrared telescope is tuned to detect infrared radiation with a frequency of 1.61THz. Calculate the wavelength of the infrared radiation. Round your answer to 3 significant digits.
Answer:
λ = 1.86 x 10⁻⁴ m = 186 μm
Explanation:
The relationship between the wavelength and the frequency of a wave is given by the following equation:
[tex]c = f\lambda\\\\\lambda = \frac{c}{f}[/tex]
where,
λ = wavelength of infrared radiation = ?
c = speed of infrared radiation = speed of light = 3 x 10⁸ m/s
f = frequency of infrared radiation = 1.61 THz = 1.61 x 10¹² Hz
Therefore,
[tex]\lambda = \frac{3\ x\ 10^8\ m/s}{1.61\ x\ 10^{12}\ Hz}[/tex]
λ = 1.86 x 10⁻⁴ m = 186 μm
In an NMR experiment, the RF source oscillates at 34 MHz and magnetic resonance of the hydrogen atoms in the sample being in- vestigated occurs when the external field Bext has magnitude 0.78 T. Assume that Bint and Bext are in the same direction and take the pro- ton magnetic moment component u, to be 1.41 X 10-26 J/T. What is the magnitude of Bint?
Answer:
[tex]B_{int}=-0.015T[/tex]
Explanation:
From the question we are told that:
RF source oscillation speed [tex]\sigma= 34 MHz[/tex]
The external field [tex]Bext =0.78 T[/tex].
Pro- ton magnetic moment component [tex]\mu=1.41 X 10-26 J/T[/tex]
Generally the equation for magnitude of [tex]B_{int}[/tex] is mathematically given by
[tex]B_{int}=B_{ext}-\frac{h\triangle \sigma}{2 \mu}[/tex]
[tex]B_{int}=0.78-\frac{6.6*10^{-34}*34*10^6}{2*1.41*10^{26}}[/tex]
[tex]B_{int}=0.78-0.7957[/tex]
[tex]B_{int}=-0.015T[/tex]
Two vectors have magnitudes 3 and 4 . how are the directions of the two vectors related if: a/the sum has magnitude 7.0
What would the current be for a circuit that has a voltage of 0.8 V and a resistance of 0.01 Q?
0 1 = 0.01 A
0 1 = 0.8 A
0 1 = 80 A
O I = 0.08 A
Answer:
80 A
Explanation:
Hi there!
Ohm's law states that [tex]V=IR[/tex] where V is the voltage, I is the current and R is the resistance.
Plug the given information into Ohm's law (V=0.8, R=0.01) and solve for I
[tex]V=IR\\0.8=I(0.01)[/tex]
Divide both sides by 0.01 to isolate I
[tex]0.8=I(0.01)\\\frac{0.8}{0.01}= \frac{I(0.01)}{0.01} \\80=I[/tex]
Therefore, the current for this circuit would be 80 A.
I hope this helps!