a cannonball is fired from a gun and lands 830 meters away at a time 14 seconds.

Answers

Answer 1

Assuming there is no air resistance, we can use the kinematic equations to calculate the initial velocity of the cannonball. We know that the horizontal velocity is constant and there is no acceleration in the horizontal direction. Therefore, we can use the formula d = vt, where d is the horizontal distance traveled, v is the horizontal velocity, and t is the time.

In this case, d = 830 meters and t = 14 seconds. Therefore,
v = d/t = 830/14 = 59.3 m/s.
This is the initial horizontal velocity of the cannonball. However, we do not know the vertical velocity or the angle at which the cannonball was fired. Therefore, we cannot determine the total velocity or the maximum height reached by the cannonball.

To know more about kinematic visit :-

https://brainly.com/question/12977552

#SPJ11


Related Questions

16. What will happen If a fast-moving car making a loud noise drives away
from a person?
O A. The frequency of the sound waves reaching the person's ear will be greater
than the frequency of the waves leaving the car.
OB. The pitch of the sound being heard by the person will appear to be lower
than the pitch of the source.
OC. The pitch of the sound being heard by the person will appear to be higher
than the pitch of the source.
O D. The pitch and frequency of the sound waves reaching the person's ear will
remain unchanged.

Answers

The frequency of the sound waves reaching the person's ear will be greater than the frequency of the waves leaving the car.

Thus, When an object's vibrations pass through a medium and hit the human eardrum, sound is created. According to physics, sound is created as a pressure wave.

When an object vibrates, the air molecules in its immediate vicinity also vibrate, starting a cascade of sound wave oscillations across the medium.

The physics definition acknowledges that sound exists irrespective of an individual's reception, in contrast to the physiological definition, which also takes into account how a subject perceives sound.

Thus, The frequency of the sound waves reaching the person's ear will be greater than the frequency of the waves leaving the car.

Learn more about Sound waves, refer to the link:

https://brainly.com/question/1554319

#SPJ1

When light travels from one medium to another with a different index of refraction, how is the light's frequency and wavelength affected?
A. When a light wave travels from a medium with a lower index of refraction to a medium with a higher index of refraction, the frequency changes and the wavelength does not.
B. The frequency does change, but the wavelength remains unchanged.
C. Both the frequency and wavelength change.
D. When a light wave travels from a medium with a lower index of refraction to a medium with a higher index of refraction, neither the wavelength nor the frequency changes.
E. The frequency does not change, but its wavelength does.

Answers

When light travels from one medium to another with a different index of refraction, the speed of the light changes, which can cause the frequency and wavelength to be affected. The index of refraction of a medium is a measure of how much the speed of light is reduced when it travels through that medium compared to the speed of light in a vacuum.

The correct answer is option E



The frequency of a wave is a measure of how many cycles of the wave occur in a given amount of time. The wavelength is a measure of the distance between two corresponding points on the wave, such as from peak to peak or trough to trough.

According to the equation c = fλ, where c is the speed of light, f is the frequency, and λ is the wavelength, if the speed of light changes when it travels from one medium to another, then either the frequency or the wavelength or both must change to maintain the same value of c.

When a light wave travels from a medium with a lower index of refraction to a medium with a higher index of refraction, the speed of light decreases. This means that the wavelength of the light wave also decreases to maintain the same frequency. Therefore, : The frequency does not change, but its wavelength does.

Conversely, when a light wave travels from a medium with a higher index of refraction to a medium with a lower index of refraction, the speed of light increases, causing the wavelength of the light wave to increase to maintain the same frequency.

To know more about index of refraction visit:-

https://brainly.com/question/30761100

#SPJ11

A proton with a kinetic energy of 4. 7×10−16Jmoves perpendicular to a magnetic field of 0. 24T.

What is the radius of its circular path?

Express your answer using two significant figures

Answers

The radius of the proton’s circular path is 1.3 × 10⁻⁴ m, expressed using two significant figures.

When a proton with kinetic energy moves perpendicular to a magnetic field, it will move in a circular path with a radius. To determine the radius of the proton’s circular path, the following formula is used:r = (mv)/(qB)where r is the radius of the circular path, m is the mass of the proton, v is the velocity of the proton, q is the charge of the proton, and B is the magnetic field.

The kinetic energy of the proton is given as 4.7 × 10⁻¹⁶ J. Since the proton is moving perpendicular to the magnetic field, the magnetic force acts as the centripetal force for the circular motion of the proton. The magnetic force experienced by the proton is given by the following formula:

Fm = qvB

Where Fm is the magnetic force experienced by the proton, v is the velocity of the proton, q is the charge of the proton, and B is the magnetic field.

The magnetic force acting as the centripetal force is given by:

Fm = mv²/r

where r is the radius of the circular path, m is the mass of the proton, and v is the velocity of the proton. Equating the two expressions for the magnetic force:

Fm = mv²/r = qvB

From the equation above: r = mv/qB

Substituting the given values: r = [(1.67 × 10⁻²⁷ kg) (2.17 × 10⁷ m/s)] / [(1.6 × 10⁻¹⁹ C) (0.24 T)] = 1.3 × 10⁻⁴ m

You can learn more about radius at: brainly.com/question/13067441

#SPJ11

use ohm’s law to determine how anemia would affect flow rate if the pressure remains constant.

Answers

According to Ohm's Law, the flow rate (Q) in a circuit is directly proportional to the applied pressure (P) and inversely proportional to the resistance (R). Mathematically, it can be expressed as: Q = P / R

If we consider the impact of anemia on flow rate while keeping the pressure constant, we need to analyze the effect on resistance. Anemia is a condition characterized by a decrease in the number of red blood cells or a decrease in the amount of hemoglobin in the blood. Both of these factors can affect blood viscosity, which in turn influences resistance to blood flow.

In general, anemia can result in decreased blood viscosity, making the blood less resistant to flow. This decrease in resistance would lead to an increase in flow rate according to Ohm's Law. However, it's important to note that the relationship between anemia and flow rate is not a direct one-to-one correspondence and can be influenced by various other factors in the circulatory system.

Therefore, in the context of Ohm's Law and assuming constant pressure, anemia would generally lead to an increase in flow rate due to the decrease in blood viscosity and subsequent decrease in resistance to flow.

Learn more about Ohm's Law here:

https://brainly.com/question/1247379

#SPJ11

) a pair of binoculars has an objective diameter of 35 mm, while the human eye has an objective diameter of about 5 mm. calculate the lgp of the binoculars vs. the human eye.

Answers

The linear magnification (M) of a pair of binoculars or the human eye can be calculated using the formula:

M = D_obj / D_eye,

where D_obj is the objective diameter and D_eye is the eye diameter.

For the binoculars, the objective diameter (D_obj) is 35 mm, and for the human eye, the objective diameter (D_eye) is about 5 mm.

Using the formula, we have:

M_binoculars = 35 mm / 5 mm,

Simplifying the expression, we find:

M_binoculars = 7.

Therefore, the linear magnification of the binoculars is 7.

For the human eye:

M_eye = 5 mm / 5 mm = 1.

Therefore, the linear magnification of the human eye is 1.

Hence, the linear magnification of the binoculars is 7, while the linear magnification of the human eye is 1.

Learn more about magnification here:

https://brainly.com/question/31564956


#SPJ11

Students are often asked to make models of the planets during a unit on astronomy. Which of the following is the most likely misconception that students could develop from the physical models they build?
A. Jupiter's red spot is large relative to the size of Jupiter.
B. The planets all have different temperatures.
C. Each planet has a unique coloring.
D. The planets are fairly similar in size.

Answers

The most likely misconception that students could develop from the physical models they build is option D: The planets are fairly similar in size.

While the models may be accurate in terms of relative distance from the sun and basic features like the number of moons, it can be difficult to accurately represent the vast differences in size between the planets in a physical model. Jupiter, for example, is over 11 times larger than Earth, while tiny Pluto is less than 0.2% of Earth's mass. Students may not fully grasp the scale of the solar system and the enormous size differences between the planets if they rely solely on physical models.
Your answer: D. The planets are fairly similar in size. When students create physical models of the planets during an astronomy unit, a likely misconception they could develop is that the planets are similar in size. This is because the models often don't accurately represent the significant differences in size among the planets. In reality, Jupiter and Saturn are much larger than Earth, Mars, and Venus, while Mercury, Neptune, and Uranus also vary in size. It's essential for students to understand that planets differ in size, temperature, and coloring to fully grasp the diversity within our solar system.

To learn more about physical visit;

https://brainly.com/question/32123193

#SPJ11

The work function (binding energy) is the energy that must be supplied to cause the release of an electron from a photoelectric material. The corresponding photon frequency is the threshold frequency. The higher the energy of the incident light, the more kinetic energy the electrons have in moving away from the surface. The work function for cerium (used increasingly in the manufacture of cell phones) is equivalent to 280.0 kJ/mol photons. Use this information to calculate the energy, wavelength, and velocity of ejected electrons. What is the maximum wavelength (in nm) at which the electron can be removed from cerium? (h = 6.626 × 10⁻³⁴ J・s; c = 2.998 × 10⁸ m/s)

Answers

The most extreme wavelength at which an electron can be expelled from cerium is around 452 nm.

How to solve

To calculate the greatest wavelength at which an electron can be expelled from cerium, ready to utilize the condition relating the vitality of a photon to its wavelength and Planck's consistent (E = hc/λ). The work for cerium is given as 280.0 kJ/mol photons.

To begin with, we change over the work from kJ/mol to J/photon by isolating Avogadro's number (6.022 × 10^23). This gives us the vitality per photon: 280.0 kJ/mol photons / 6.022 × 10^23 photons/mol = 4.65 × 10^-19 J/photon.

Another, we improve the condition E = hc/λ to fathom for wavelength (λ). Modifying, we have λ = hc/E.

Substituting the given values for Planck's steady (h = 6.626 × 10^-34 J・s) and the speed of light (c = 2.998 × 10^8 m/s), and the calculated vitality per photon, we get:

λ = (6.626 × 10^-34 J・s × 2.998 × 10^8 m/s) / (4.65 × 10^-19 J/photon)

Streamlining the expression gives the greatest wavelength (λ) in meters. To change over it to nanometers, we increase by 10^9:

λ = 4.52 × 10^-7 m = 452 nm.

Learn more about work function here:

https://brainly.com/question/19427469

#SPJ1

atmosphere has low air pressure and is mostly carbon dioxide

Answers

The atmosphere on Mars has a low air pressure and is mostly composed of carbon dioxide. This means that the air is thinner and less dense than on Earth, which can make it difficult for humans to breathe without the assistance of specialized equipment.

Additionally, the high levels of carbon dioxide in the atmosphere make it difficult for humans to grow crops and sustain life on the planet without the use of advanced technologies. It sounds like you're describing some characteristics of an atmosphere that has low air pressure and is mostly composed of carbon dioxide.

Here's an explanation using the terms you provided: An atmosphere with low air pressure typically has a lower density of air molecules, meaning there are fewer air molecules in a given volume compared to an atmosphere with higher pressure.

In this case, the atmosphere is primarily composed of carbon dioxide, which is a greenhouse gas. This means that the carbon dioxide in the atmosphere can trap heat, potentially causing a greenhouse effect and impacting the climate of the planet.

To know more about atmosphere visit -

brainly.com/question/32274037

#SPJ11

true or false: the resistances measured in this experiment are very small. the values of resistance will be less than 1 ω.

Answers

False. The statement that the resistances measured in the experiment are very small and less than 1 Ω cannot be determined solely based on the information provided.

The values of resistance in an experiment can vary widely depending on the specific setup and components used.

Resistances can range from very small values (less than 1 Ω) to extremely large values, depending on the context and purpose of the experiment. Additional information about the specific experiment and its components would be needed to make a definitive statement about the resistances being measured.

For more such questions on Resistance :-

brainly.com/question/31272277

#SPJ11

.A radio antenna broadcasts a 1.0 MHz radio wave with 26.0 kW of power. Assume that the radiation is emitted uniformly in all directions.
a) What is the wave's intensity 30.0 km from the antenna?
b) What is the electric field amplitude at this distance?

Answers

The wave's a) intensity 30.0 km from the antenna is approximately 4.9 x 10⁻⁶ W/m². b) The electric field amplitude at this distance is approximately 7.0 x 10⁻⁵ V/m.

What is amplitude?

In physics, amplitude refers to the maximum displacement or magnitude of a wave or oscillation from its equilibrium position. It is a measure of the strength, intensity, or size of the oscillation.

Amplitude is typically used to describe different types of waves, such as sound waves, electromagnetic waves (including light waves), and mechanical waves. In each case, the amplitude represents the maximum distance that a particle or field element moves from its rest position as the wave passes through.

To calculate the wave's intensity, we can use the formula:

I = P / (4πr²)

where I is the intensity, P is the power, and r is the distance from the antenna. Substituting the given values, we have:

I = (26.0 kW) / (4π(30.0 km)²) = 2.9 x 10⁻⁸ W/m²

To find the electric field amplitude, we can use the relationship between intensity and electric field:

I = (ε₀c)E₀²

where I is the intensity, ε₀ is the vacuum permittivity, c is the speed of light, and E₀ is the electric field amplitude. Rearranging the equation, we can solve for E₀:

E₀ = √(I / (ε₀c))

Substituting the known values, we get:

E₀ = √((2.9 x 10⁻⁸ W/m²) / (8.85 x 10⁻¹² F/m)(3.00 x 10⁸ m/s)) = 7.0 x 10⁻⁵ V/m

Therefore, the wave's intensity 30.0 km from the antenna is approximately 4.9 x 10⁻⁶ W/m², and the electric field amplitude at this distance is approximately 7.0 x 10⁻⁵ V/m.

To know more about amplitude, refer here:

https://brainly.com/question/31013469#

#SPJ4

When a fan is switched on, it achieves an angular acceleration of 250 rad/s2. After 1.2 s, what is the angular velocity in revolutions per minute?
A) 33.1 rev/min
B) 39.8 rev/min
C) 40.0 rev/min
D) 47.7 rev/min

Answers

If a fan is switched on for 1.2 seconds with an angular acceleration of 250 rad/s², its angular velocity is calculated to be 286.4789 rev/min. None of the options provided are correct.

According to the given information:

Angular acceleration, α = 250 rad/s²

Time, t = 1.2 s

Since the fan was off before switching on,

Initial angular velocity, ω₀ = 0 rad/s

To find the final angular velocity of the fan, we can use the formula:

ω = ω₀ + αt ....(i)

where, ω ⇒ final angular velocity

ω₀ ⇒ initial angular velocity (in radians)

α ⇒ angular acceleration (in rad/s²)

t ⇒ time (in seconds)

Substituting the values of ω₀, α, and t into equation (i), we have:

ω = 0 + (250 * 1.2)

ω = 300 (rad/s) ....(ii)

To convert the answer to rev/min, we need to perform the following conversions:

1 revolution = 2π radians

1 minute = 60 seconds ....(iii)

Using the conversion factors, we can modify the answer from rad/s to rev/min. The conversion is as follows:

ω = 300 (rad/s)

ω = 300 (rad/s) × (1 rev / 2π rad) × (60 s / 1 min)

ω = 300 [(1 / 2π ) / (1 / 60)] (rev/s)

ω = 300 × (60 / (2π)) (rev/s)

ω = (300 × 30) / π (rev/s)

ω = 900 / π (rev/s)

ω = 286.4789 (rev/s)

Therefore, if a fan is switched on for 1.2 seconds with angular acceleration 250 rad/s², its angular velocity is calculated to be 286.4789 rev/min.

Hence, none of the options are correct.

To learn more about angular acceleration:

brainly.com/question/30237820

To solve this problem, we need to use the formula that relates angular acceleration, time, and initial and final angular velocities:

angular acceleration = (final angular velocity - initial angular velocity) / time

In this case, we know that the initial angular velocity is 0 (since the fan starts from rest), the angular acceleration is 250 rad/s^2, and the time is 1.2 s. Let's rearrange the formula to solve for the final angular velocity:

final angular velocity = (angular acceleration * time) + initial angular velocity

final angular velocity = (250 rad/s^2 * 1.2 s) + 0 rad/s

final angular velocity = 300 rad/s

Now we need to convert this to revolutions per minute. Since there are 2π radians in one revolution and 60 seconds in one minute, we can use the following conversion factor:

1 rev/min = 2π/60 rad/s

final angular velocity in rev/min = (300 rad/s * 60 min/1 s) / (2π rad/1 rev)

final angular velocity in rev/min = 47.7 rev/min

Therefore, the answer is D) 47.7 rev/min.

To know more about angular velocity in revolutions per minute visit

https://brainly.com/question/28257337

SPJ11


.Find the fundamental frequency and the frequency of the first three overtones of the pipe 60.0cm long, if the pipe is open at both ends.
Ffund,Fov1,Fov2,Fov3=______Hz
Find the funaemental freuency and the frequency of the first three overtones of the pipe 60.0cm long, if the pipe is closed at one end.
Ffund,Fov1,Fov2,Fov3=________Hz
If the pipe is open at both ends, what is the number of the highest harmonic that may be heard by a person who can hear frequencies from 20.0Hz to 2.00x10^4Hz?
n=____
If the pipe is closed at one end, what is the number of the highest harmonic that may be heard by a person who can hear frequencies from 20.0Hz to 2.00x10^4Hz?
n=____

Answers

For a pipe 60.0 cm long, open at both ends: Fₐₒᵥ₁ = 282.8 Hz, Fₐₒᵥ₂ = 848.4 Hz, Fₐₒᵥ₃ = 1414 Hz. For a pipe closed at one end: Fᶜₗₒ₁ = 94.3 Hz, Fᶜₗₒ₂ = 282.8 Hz, Fᶜₗₒ₃ = 471.4 Hz.

Determine what are the fundamental frequency?

Fundamental frequency and the frequency of the first three overtones of a pipe 60.0 cm long, open at both ends:

Fₐₒᵥ₁, Fₐₒᵥ₂, Fₐₒᵥ₃ = 282.8 Hz, 848.4 Hz, 1414 Hz

Fundamental frequency and the frequency of the first three overtones of a pipe 60.0 cm long, closed at one end:

Fᶜₗₒ₁, Fᶜₗₒ₂, Fᶜₗₒ₃ = 94.3 Hz, 282.8 Hz, 471.4 Hz

Number of the highest harmonic that may be heard by a person who can hear frequencies from 20.0 Hz to 2.00x10⁴ Hz in a pipe open at both ends:

n = 99

Number of the highest harmonic that may be heard by a person who can hear frequencies from 20.0 Hz to 2.00x10⁴ Hz in a pipe closed at one end:

n = 198

For a pipe open at both ends, the fundamental frequency (Fₐₒᵥ₁) can be calculated using the formula Fₐₒᵥ₁ = v / 2L, where v is the speed of sound and L is the length of the pipe. In this case, the length of the pipe is 60.0 cm (or 0.60 m).

Using the known speed of sound (approximately 343 m/s), we can substitute these values into the formula to find Fₐₒᵥ₁ = 343 / (2 * 0.60) = 282.8 Hz.

The frequencies of the first three overtones can be calculated by multiplying the fundamental frequency by the harmonic number (1, 2, 3). Therefore, Fₐₒᵥ₂ = 2 * Fₐₒᵥ₁ = 2 * 282.8 Hz = 565.6 Hz, and Fₐₒᵥ₃ = 3 * Fₐₒᵥ₁ = 3 * 282.8 Hz = 848.4 Hz.

For a pipe closed at one end, the fundamental frequency (Fᶜₗₒ₁) can be calculated using the formula Fᶜₗₒ₁ = v / 4L, where v is the speed of sound and L is the length of the pipe. Substituting the values, we find Fᶜₗₒ₁ = 343 / (4 * 0.60) = 94.3 Hz.

The frequencies of the first three overtones for a closed pipe can be calculated using the formula Fᶜₗₒₙ = (2n - 1) * Fᶜₗₒ₁, where n is the harmonic number. Thus, Fᶜₗₒ₂ = (2 * 2 - 1) * Fᶜₗₒ₁ = 3 * 94.3 Hz = 282.8 Hz, and Fᶜₗₒ₃ = (2 * 3 - 1) * Fᶜₗₒ₁ = 5 * 94.3 Hz = 471.4 Hz.

To know more about speed of sound, refer here:

https://brainly.com/question/16485934#

#SPJ4

the liquidity ratio is designed to show the percentage of you can cover with your current liquid assets. group of answer choices planned savings current expenses planned purchases current debts long-term debts

Answers

The liquidity ratio is designed to show the percentage of your current debts that can be covered with your current liquid assets. It helps assess your ability to meet short-term obligations and is an important indicator of financial stability.

The liquidity ratio is a financial metric that measures the ability of a company or individual to cover their current debts and expenses with their current liquid assets. In simpler terms, it is designed to show the percentage of planned savings, current expenses, planned purchases, current debts, and long-term debts that can be covered using available cash or easily convertible assets. The higher the liquidity ratio, the better the financial health of the company or individual, as they are more capable of meeting their financial obligations without relying on external sources of financing.

A low liquidity ratio, on the other hand, indicates that there may be a cash flow problem or that the individual or company may have difficulty meeting their short-term financial commitments. In summary, the liquidity ratio is an important financial ratio that measures the financial flexibility and solvency of an individual or company, and provides insight into their ability to meet their financial obligations in the short term.

To know more about liquid assets visit:-

https://brainly.com/question/29760652

#SPJ11

1).
A). Find the total resistance
B). Find the current
ww
1.5 V
1.5 V
R1
5Q
ww
R3
15 Ω
3). A. Find the total resistance
B. Find the current in each resistor.
C. Find the voltage across each resistor.
R2
10 Q
R1
R2
R3
50 100 150
E
25V
2). A). Find the total resistance
B). Find the total current
*
8
2
R₂
2012
ww
4). A. Find V1
ww
7
8₁
10 k
3
R₁
3802
6
R₂
210
B. Find V1 and V2
C. Why are V2 and V3 equal?
V₁-V,
5
E=V₁ + V₂
R₁
3012
R₂
1k0

Answers

A) To find the total resistance, we need to calculate the equivalent resistance of the resistors in series and parallel. From the given circuit, it seems that R1 and R2 are in series, and R3 is in parallel to the combination of R1 and R2.

The resistance of R1 and R2 in series can be added:

R1 + R2 = 5 Ω + 10 Ω = 15 Ω

The total resistance of R1 and R2 in series is 15 Ω.

The parallel combination of R1, R2, and R3 can be calculated using the formula:

1 / (R1 + R2) = 1 / 15 Ω

Adding R3 in parallel to this combination:

1 / (R1 + R2) + 1 / R3 = 1 / 15 Ω + 1 / 15 Ω = 2 / 15 Ω

Taking the reciprocal of the sum gives the total resistance:

1 / (2 / 15 Ω) = 15 Ω / 2

The total resistance is 7.5 Ω.

B) To find the current, we can use Ohm's Law (I = V / R), where V is the voltage and R is the resistance.

In this case, the voltage across the circuit is given as 1.5 V. Using the total resistance of 7.5 Ω:

I = 1.5 V / 7.5 Ω = 0.2 A or 200 mA

The current flowing through the circuit is 0.2 A or 200 mA.

A) To find the total resistance, we need to calculate the equivalent resistance of the resistors in series and parallel. From the given circuit, it seems that R1, R2, and R3 are in series.

The total resistance is the sum of R1, R2, and R3:

R_total = R1 + R2 + R3 = 50 Ω + 100 Ω + 150 Ω = 300 Ω

The total resistance is 300 Ω.

B) Since all resistors are in series, the current flowing through each resistor will be the same. To find the current, we can use Ohm's Law (I = V / R), where V is the voltage and R is the resistance.

The voltage across the circuit is given as 25 V. Using the total resistance of 300 Ω:

I = 25 V / 300 Ω = 0.0833 A or 83.3 mA (rounded to 3 decimal places)

The current flowing through each resistor is approximately 0.0833 A or 83.3 mA.

C) The voltage across each resistor can be calculated using Ohm's Law (V = I * R), where I is the current and R is the resistance.

Voltage across R1: V1 = I * R1 = 0.0833 A * 50 Ω = 4.165 V

Voltage across R2: V2 = I * R2 = 0.0833 A * 100 Ω = 8.33 V

Voltage across R3: V3 = I * R3 = 0.0833 A * 150 Ω = 12.495 V

The voltage across R1 is approximately 4.165 V, across R2 is approximately 8.33 V, and across R3 is approximately 12.495 V.

Learn more about voltage on:

https://brainly.com/question/32002804

#SPJ1

A student is given two different convex spherical mirrors and asked to determine which of the mirrors has the shorter focal length. Answering which of the following questions would allow the student to make this determination? Select two answers.
(A) Which mirror has a larger magnification for a given object distance?
(B) Which mirror has the greater change in magnification when submerged in water?
(C) Which mirror produces an upright image? (D) Which mirror has a smaller radius of curvature?

Answers

To determine which of the convex spherical mirrors has the shorter focal length, the student needs to consider two factors: magnification and radius of curvature. The correct answers to the question are (A) Which mirror has a larger magnification for a given object distance? and (D) Which mirror has a smaller radius of curvature?

The magnification of a mirror is directly proportional to its focal length, with a smaller focal length resulting in a larger magnification. Therefore, the mirror that has a larger magnification for a given object distance is likely to have the shorter focal length.

Additionally, the radius of curvature of a mirror is inversely proportional to its focal length, with a smaller radius resulting in a shorter focal length. Therefore, the mirror that has a smaller radius of curvature is also likely to have the shorter focal length.

Option (B) is irrelevant to determining the focal length of the mirrors, as the change in magnification when submerged in water does not provide any information about the focal length. Option (C) is also not relevant, as producing an upright image does not necessarily indicate a shorter focal length.

To know more about convex spherical mirrors visit:-

https://brainly.com/question/13725031

#SPJ11

exercise 1.1. skydiver. a skydiver jumps out of a plane and lands somewhere at random inside a circle with radius one mile. what is his landing location?

Answers

The skydiver's landing location cannot be determined precisely as he lands randomly within a circle with a radius of one mile.

Since the skydiver's landing location is random within a circle with a radius of one mile, it is impossible to provide an exact location for where he will land. The area within which the skydiver can land can be calculated using the formula for the area of a circle, A = π * r^2, where A is the area and r is the radius.

In this case, A = π * (1 mile)^2 = π square miles. However, this only gives us the total area within which the skydiver may land, not a specific landing point. To pinpoint the exact location, additional information such as wind direction, the skydiver's skill level, and other factors would be necessary.

Learn more about circle here:

https://brainly.com/question/12983138

#SPJ11

Among the personal factors cognitive psychologists consider when predicting aggressive behavior, which of the following is typically included?
A. The provocative situation
B. Genetic predisposition to aggression
C. The ego defense mechanisms the person uses
D. Visual cues in the environment.

Answers

That cognitive psychologists typically consider a range of personal factors when predicting aggressive behavior, including cognitive processes, emotions, and environmental factors. In terms of personal  predisposition  aggression is often included as a key consideration.

This refers to the idea that some individuals may have a genetic makeup that makes them more prone to aggressive behavior than others.  that genetics alone cannot fully explain aggressive behavior, and other factors such as upbringing and life experiences also play a role. The other options you provided - (the provocative situation), C (the ego defense mechanisms the person uses), and (visual cues in the environment) - are also important factors that may contribute to or trigger aggressive behavior, but they are not typically considered as primary personal factors in cognitive psychology.

that cognitive psychologists consider various factors when predicting aggressive behavior. While factors like the provocative situation  and visual cues in the environment  can contribute to aggressive behavior, they are not personal factors. Ego defense mechanisms  may also influence aggression, but they are not as central to cognitive psychologists' predictions as genetic predisposition. this answer is that genetic predisposition to aggression (B) is a personal factor that directly influences an individual's likelihood of exhibiting aggressive behavior. Researchers have found links between certain genes and aggressive tendencies, making it a relevant factor for cognitive psychologists to consider when predicting aggression.

To know more about consideration Visit;

https://brainly.com/question/30026105

#SPJ11

please help me ?
physics

Answers

The wavelength of the first light is 5 x 10⁻⁶.

The wavelength of the second light is 6.5 x 10⁻⁶.

The wavelength of the third light is 4 x 10⁻⁶.

Grating constant, d = 5 x 10⁻⁵m

An optical element having a periodic structure that divides light into several beams that move in different directions is known as a diffraction grating.

It is an alternate method of using a prism to view spectra. Typically, the divided light will have a maximum at an angle when light is incident on the grating.

The expression for the diffraction grating is given by,

nλ = d sinθ

1) sinθ = 10 x 10⁻²/1 = 10⁻¹

So, the wavelength of the light is,

λ = d sinθ

λ = 5 x 10⁻⁵ x 10⁻¹

λ = 5 x 10⁻⁶m

2) sinθ = 13 x 10⁻²/1 = 1.3 x 10⁻¹

So, the wavelength of the light is,

λ = d sinθ

λ = 5 x 10⁻⁵x 1.3 x 10⁻¹

λ = 6.5 x 10⁻⁶m

3) sinθ = 8 x 10⁻²/1 = 8 x 10⁻²

So, the wavelength of the light is,

λ = d sinθ

λ = 5 x 10⁻⁵x 8 x 10⁻²

λ = 4 x 10⁻⁶m

To learn more about diffraction grating, click:

https://brainly.com/question/30409878

#SPJ1

.In single-slit diffraction, what causes the dark fringe on either side of the central bright fringe?

Answers

The dark fringes on either side of the central bright fringe in single-slit diffraction are caused by destructive interference. When light passes through a narrow slit, it diffracts, or spreads out, into a pattern of bright and dark fringes.


When waves of light pass through a narrow slit, they spread out in all directions, forming a pattern of bright and dark fringes. The pattern is a result of interference between the waves of light. When two waves meet, they can either add together (constructive interference) or cancel each other out (destructive interference), depending on the phase of the waves.


This interference pattern consists of a central bright fringe (maximum) surrounded by alternating dark (minimum) and bright fringes. The dark fringes occur when light waves from the slit destructively interfere with each other. This means that the crest of one wave coincides with the trough of another wave, resulting in their amplitudes cancelling each other out and creating a dark fringe. This pattern continues on either side of the central bright fringe, with the dark fringes becoming progressively less distinct as they move further from the center.

To know more about diffraction Visit  ;

https://brainly.com/question/12290582

#SPJ11

question by how much would the answer change if the plane coasted for 2.0 s before the pilot applied the brakes?

Answers

The answer would change based on the additional distance traveled during the 2.0 s coasting period before applying the brakes, which depends on the plane's initial speed.

To determine how much the answer would change, we need to calculate the distance the plane travels while coasting for 2.0 s. We'll use the formula for distance: d = v * t, where d is distance, v is initial speed, and t is time. First, find the plane's initial speed (v).

Next, plug the initial speed and time (2.0 s) into the formula to find the additional distance traveled during coasting. Finally, factor this additional distance into the overall stopping distance. The answer would change by the additional distance the plane traveled during the 2.0 s coasting period before applying the brakes.

Learn more about  stopping distance here:

https://brainly.com/question/28542251

#SPJ11

How harmful are the emissions from cosmetics, hygiene, and cleaning products? Claim
Evidence 1
Evidence 2
Evidence 3
Reasoning ​

Answers

The claim can be Cosmetics, hygiene, and cleaning product emissions may be dangerous.

Evidence 1: Effect of Air Quality

Volatile organic compounds (VOCs), including formaldehyde, benzene, and toluene, can be found in a variety of cosmetic, hygiene, and cleaning goods. These VOCs have the potential to evaportate and cause indoor air pollution.

Environmental impact is evidence number two

Cosmetics, hygiene, and cleaning goods can have a detrimental environmental impact during manufacturing, usage, and disposal. Microplastics and certain chemicals are among the substances present in these items that may find their way into rivers and endanger aquatic life.

Evidence 3: Worker health effects

Occupational health risks can be present for workers who manufacture and produce hygiene, cleaning, and cosmetic items.

Reasoning: It is clear from the research that emissions from cosmetic, hygiene, and cleaning goods have the potential to be harmful.

Thus, this way, harmful are the emissions from cosmetics, hygiene, and cleaning products.

For more details regarding claim, visit:

https://brainly.com/question/22898077

#SPJ1

PLS HURY I NEED TO FINISH FINALS
How can exercise help with a person’s mental health?
Responses

Physical activity helps a person to be less stressed or anxious.

Physical activity can assist with lowering blood pressure

Physical activity uses brain cells and causes loss of memory.

Physical activity causes feelings of hopelessness and depression.

Answers

Physical activity helps a person to be less stressed or anxious. Physical activity can assist with lowering blood pressure. Option A and B

A) Physical activity helps a person to be less stressed or anxious: Engaging in exercise can act as a natural stress reliever. It promotes the release of endorphins, which are chemicals in the brain that help improve mood and reduce stress and anxiety. Exercise also provides a distraction from daily worries and can serve as a form of relaxation.

B) Physical activity can assist with lowering blood pressure: Regular exercise is beneficial for cardiovascular health. It strengthens the heart and improves blood circulation, which can help lower blood pressure.

High blood pressure is associated with an increased risk of developing mental health issues, such as anxiety and depression. By maintaining a healthy blood pressure, exercise indirectly supports mental well-being.

C) Physical activity uses brain cells and causes loss of memory: This statement is incorrect. Exercise actually promotes the growth and development of new brain cells, particularly in areas associated with memory and learning.

Regular physical activity has been linked to improved cognitive function, enhanced memory retention, and a reduced risk of cognitive decline and disorders like Alzheimer's disease.

D) Physical activity causes feelings of hopelessness and depression: This statement is also incorrect. Exercise has been shown to have antidepressant effects by increasing the production of endorphins, serotonin, and other neurotransmitters that regulate mood.

It can improve symptoms of depression and help individuals experiencing feelings of hopelessness by promoting a sense of accomplishment, boosting self-esteem, and providing a healthy outlet for emotions. Option A and B

For more such questions on Physical activity visit:

https://brainly.com/question/1963437

#SPJ8

a 1.0 kg ball hits the floor with a velocity of 2.0 m/s and bounces back up with a velocity of 1.5 m/s. what is the balls change in momentum

Answers

A 1.0 kg ball hits the floor with a velocity of 2.0 m/s and bounces back up with a velocity of 1.5 m/s, the ball's change in momentum is -3.5 kg m/s.

The ball's change in momentum can be calculated using the formula:
change in momentum = final momentum - initial momentum
The initial momentum of the ball can be found using the formula:
initial momentum = mass x velocity
So, the initial momentum of the ball is:
initial momentum = 1.0 kg x 2.0 m/s = 2.0 kg m/s
The final momentum of the ball can also be found using the same formula:
final momentum = mass x velocity
So, the final momentum of the ball is:
final momentum = 1.0 kg x (-1.5 m/s) = -1.5 kg m/s
(Note that the negative sign indicates that the ball is moving in the opposite direction after bouncing back up.)
Therefore, the ball's change in momentum is:
change in momentum = final momentum - initial momentum
change in momentum = (-1.5 kg m/s) - (2.0 kg m/s)
change in momentum = -3.5 kg m/s
To know more about change in momentum, visit:

https://brainly.com/question/31707268

#SPJ11

Suppose a spaceship heading straight towards the Earth at 0.55c can shoot a canister at 0.55c relative to the ship. What is the speed of the canister relative to the Earth? A. 0.10c B. 0.55c C. 0.89c D. 1.10c

Answers

the relativistic addition of velocities formula: v = (u + w) / (1 + uw/c^2), where v is the relative  are  velocity in a   between two objects moving at velocities u and w relative to a third reference frame. In this case, u is the velocity of the spaceship relative

the speed of the canister relative to the Earth is not simply 1.1c (the sum of the velocities of the spaceship and canister) is due to the effects of special relativity. At such high speeds, the relativistic addition of velocities formula must be used to properly calculate the relative velocities between objects moving at significant fractions of the speed of ligh


where V is the combined velocity, v1 is the velocity of the spaceship (0.55c), v2 is the velocity of the canister relative to the spaceship (0.55c), and c is the speed of light.  Plug in the values into the formula  V = (0.55c + 0.55c) / (1 + (0.55c * 0.55c) / c^2)Simplify the equation.V = (1.10c) / (1 + 0.3025) Complete the calculation .V = 1.10c / 1.3025V ≈ 0.89c the speed of the canister relative to the Earth is approximately 0.89c, which is option C.

To know more about velocity Visit ;

https://brainly.com/question/30559316

#SPJ11

An AC circuit supplies V_rms = 110 V at 60 Hz to a 5 - ohm resistor, and a 40 - mu F capacitor, and an inductor of variable inductance in the 5 mH to 200 mH range, all connected in series. The capacitor is rated to stand a maximum voltage of 8ooV. (a) What is the largest current possible that does no damage to the capacitor? (b) To what value can the self-inductance be increased safely?

Answers

(a) The largest current that does not damage the capacitor is approximately 109.6 mA.

(b) The self-inductance (L) can be safely increased up to approximately 181.8 mH.

Determine the maximum current?

To calculate the maximum current that the capacitor can safely handle, we need to consider the maximum voltage it can withstand and the capacitance of the capacitor. The maximum voltage rating of the capacitor is 800 V.

We can use the formula for the capacitive reactance (Xc) to find the current flowing through the capacitor:

Xc = 1 / (2πfC),

where f is the frequency and C is the capacitance.

Given:

- Frequency (f) = 60 Hz

- Capacitance (C) = 40 μF = 40 × 10^(-6) F

Substituting the values into the formula, we have:

Xc = 1 / (2π * 60 * 40 × 10^(-6)) ≈ 66.26 Ω.

To find the current (Ic) flowing through the capacitor, we can use Ohm's Law:

Ic = Vrms / Xc,

where Vrms is the root mean square voltage.

Given:

- Vrms = 110 V

Substituting the values, we have:

Ic = 110 / 66.26 ≈ 1.659 A.

However, we need to ensure that the current flowing through the capacitor does not exceed its safe limit. Therefore, the largest current that does no damage to the capacitor is approximately 109.6 mA.

Determine the maximum value of self-inductance?

To determine the maximum value of self-inductance that can be safely used, we need to consider the frequency of the AC circuit and the maximum voltage rating of the capacitor.

The reactance of an inductor (Xl) is given by the formula:

Xl = 2πfL,

where f is the frequency and L is the inductance.

Given:

- Frequency (f) = 60 Hz

- Maximum voltage rating of the capacitor = 800 V

To find the maximum value of self-inductance (L), we can rearrange the formula:

L = Xl / (2πf).

Substituting the values, we have:

L = (800 / (2π * 60)) ≈ 2.122 H.

However, the problem states that the inductance should be in the range of 5 mH to 200 mH. Therefore, the maximum value of self-inductance that can be safely used is approximately 181.8 mH (0.1818 H).

To know more about frequency, refer here:

https://brainly.com/question/29739263#

#SPJ4

a 1980 kg truck is traveling north a 42 km/h turns east and accelerates to 57 km/h a) what is the change in the truck's kinetic energy?

Answers

The change in the truck's kinetic energy is approximately 113709.9718 Joules.

What is kinetic energy?

Kinetic energy is a fundamental concept in physics that represents the energy possessed by an object due to its motion. It is a form of energy associated with the speed or velocity of an object. When an object is in motion, it has the ability to do work or transfer energy to other objects.

Given:

Mass of the truck (m) = 1980 kg

Initial velocity (v1) = 42 km/h = 11.67 m/s

Final velocity (v2) = 57 km/h = 15.83 m/s

Using the formula for kinetic energy:

Initial kinetic energy (KE1) = (1/2) * m * v1²

= (1/2) * 1980 kg * (11.67 m/s)²

Final kinetic energy (KE2) = (1/2) * m * v2²

= (1/2) * 1980 kg * (15.83 m/s)²

Calculating the initial kinetic energy:

KE1 = (1/2) * 1980 kg * (11.67 m/s)²

= 1/2 * 1980 kg * 136.1564 m²/s²

= 133770.5524 Joules

Calculating the final kinetic energy:

KE2 = (1/2) * 1980 kg * (15.83 m/s)²

= 1/2 * 1980 kg * 250.1089 m²/s²

= 247480.5242 Joules

Now, let's calculate the change in kinetic energy:

ΔKE = KE2 - KE1

= 247480.5242 Joules - 133770.5524 Joules

= 113709.9718 Joules

Therefore, the change in the truck's kinetic energy is approximately 113709.9718 Joules.

Learn more about kinetic energy:

https://brainly.com/question/999862

#SPJ4

a roller coaster car does a loop-the-loop. when it is at the very top, which of the following is true? group of answer choices

Answers

When the roller coaster car is at the very top of the loop-the-loop, it is experiencing a moment of weightlessness or zero gravity.

This is because the force of gravity acting on the car is equal to the force of the car's momentum and centripetal force, which keeps it moving in a circular path. As the car reaches the top of the loop, its velocity slows down, and the centripetal force becomes greater than the force of gravity, causing the car to feel weightless for a brief moment. This sensation is often described as feeling like you're floating or being lifted out of your seat. However, the car is still securely attached to the track, so there is no danger of falling out.

To know more about weightlessness visit :-

https://brainly.com/question/845413

#SPJ11

a transverse wave traveling through space has a wavelength of 4 x 10^-5 meters. what type of wave could it be?

Answers

Based on the given wavelength of 4 x 10^-5 meters, the wave in question is likely an electromagnetic wave. Electromagnetic waves are transverse waves that propagate through space and consist of oscillating electric and magnetic fields.

The wavelength of an electromagnetic wave is determined by the frequency of the wave, which is related to the energy of the wave. The electromagnetic spectrum includes various types of waves, including radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays, and gamma rays.

The specific type of electromagnetic wave that corresponds to a wavelength of 4 x 10^-5 meters cannot be determined without additional information, such as the frequency or energy of the wave. Based on the given wavelength of 4 x 10^-5 meters, the transverse wave in question could be an electromagnetic wave, specifically within the range of infrared radiation.

Electromagnetic waves are transverse waves that can travel through space, and they include different types based on their wavelengths, such as radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, and gamma rays.

Infrared radiation typically has a wavelength range between 7 x 10^-7 meters and 1 x 10^-3 meters, which includes the wavelength you've provided (4 x 10^-5 meters). Therefore, this wave is likely an infrared wave.

To know more about electromagnetic waves visit -

brainly.com/question/29696752

#SPJ11

read each question carefully. write your response in the space provided for each part of each question. answers must be written out in paragraph form. outlines, bulleted lists, or diagrams alone are not acceptable and will not be scored. researchers tested the effect of light on the rate of photosynthesis by a species of shrub growing under conditions that differ widely in the amount of available light but where the availability of water and soil nutrients is fairly constant. under constant temperature, relative humidity, and leaf surface area, the researchers used increasing illumination (measured as photosynthetic photon flux density, the number of photons of wavelengths between 400 and 700 nanometers per unit surface area and unit time) and determined the net photosynthesis (measured by the amount of carbon dioxide fixed per unit surface area and unit time at each illumination) of the shrubs growing in full sun, partial sun, or in shade (table 1).

Answers

The researchers conducted an experiment to investigate the effect of light on the rate of photosynthesis in a species of shrub. They specifically focused on the impact of varying levels of available light while keeping the conditions of water availability and soil nutrients constant. The experiment maintained a consistent temperature, relative humidity, and leaf surface area throughout.

To measure the effect of light, the researchers used increasing illumination, quantified as photosynthetic photon flux density. This measure represents the number of photons within the wavelength range of 400 to 700 nanometers per unit surface area and unit time. By manipulating the illumination levels, the researchers created different light conditions for the shrubs, including full sun, partial sun, and shade.

The researchers then measured the net photosynthesis of the shrubs under each illumination condition. Net photosynthesis was assessed by quantifying the amount of carbon dioxide fixed per unit surface area and unit time at each level of illumination.

The experiment aimed to determine how the rate of photosynthesis in the shrubs is influenced by varying light conditions. By subjecting the shrubs to different levels of illumination, ranging from full sun to partial sun and shade, the researchers could assess how the availability of light affects the process of photosynthesis.

To measure the effect, the researchers utilized photosynthetic photon flux density, which is a standardized measure of light intensity within the photosynthetically active range. This measure allowed them to precisely control and quantify the illumination levels experienced by the shrubs.

To assess the rate of photosynthesis, the researchers focused on net photosynthesis, which represents the amount of carbon dioxide that is fixed (converted to organic compounds) per unit surface area and unit time. This measurement provides insights into the productivity and efficiency of the shrubs' photosynthetic process under different light conditions.

By conducting this experiment and analyzing the data obtained, the researchers were able to explore the relationship between light availability and the rate of photosynthesis in the studied shrub species. The results of the experiment will contribute to our understanding of how light influences plant growth, productivity, and adaptation strategies. Additionally, the findings can have implications for agricultural practices, forestry, and ecological studies where light availability plays a crucial role in plant performance and ecosystem dynamics.

To know more about photosynthesis, visit :

https://brainly.com/question/29764662

#SPJ11


1. What is the PE of a 2 kg block 5 m above the floor?

Answers

The potential energy of the 2 kg block when it is 5 m above the floor is 98 Joules, as potential energy is a form of energy that depends on the position or height of an object relative to a reference point. In this case, the reference point is the floor

The potential energy (PE) of an object is given by the formula:

PE = m × g × h

where m is the mass of the object, g is the acceleration due to gravity, and h is the height.

Given: Mass of the block (m) = 2 kg

Height above the floor (h) = 5 m

Acceleration due to gravity (g) = 9.8 m/s²

Using the given values, one can calculate the potential energy:

PE = 2 kg ×9.8 m/s² ×5 m PE = 98 joules

Learn more about potential energy here.

https://brainly.com/question/31068452

#SPJ1

Other Questions
what is the health and social care levy? what are the arguments infavour for it ? and what are the arguments against it ? How does the author use the incident where Maddy and James catch a mocking-bird for Master Jefferson to reveal aspects of Maddys character? What does he learn about himself, and what does the reader learn about him? Maddy swallowed. the most awful feeling came over him, all at once, like water poured out of a bucket onto his head. That bird had been free, and now it was a slave. He, Maddy, had sold that bird into slavery. (144) Determine whether the following statement is true or false: Departmental contribution to overhead is the same as gross profit generated by that department. 2. (40 Points) Solve the following ODE by the shooting (Initial-Value) Method using the first order Explicit Euler method with Ax = 0.25. + 5' + 4y = 1, 7(0) = 0 and (1) = 1 What is the usual fate of orally ingested enzyme supplements: a. completely absorbed in original form from small intestine b. mostly absorbed in original form from stomach c. digested bygastrointestinal enzymes d. rapidly degraded by salivary secretions Please help me The stem-and-leaf plot shows the numbers of confirmed cases of a virus in 15 countries.A stem and leaf plot. A vertical line separates each stem from its first leaf. The first row has a stem of 4 and leaves 1, 1, 3, 3, and 5. The second row has a stem of 5 and leaves 0, 2, 3, and 4. The third row has a stem of 6 and leaves 2, 3, 3, and 7. The fourth row has a stem of 7 and leaf 5. The fifth row has a stem of 8 and no leaves. The sixth row has a stem of 9 and leaf 7. The key shows 5 vertical bar 0 is equal to 50 cases.How many of the countries have more than 60 confirmed cases describe one of the incongruities found in genesis that lead us to believe that it could not be the work of a single author (moses) Which cause BEST explains the itchiness associated with mosquito bites?A. an adaptive immune system response to molecules found in mosquito salivaB. an innate immune system response to molecules found in mosquito salivaC. a sensory neuron response to neuropeptides found in mosquito salivaD. a motor neuron response to neuropeptides found in mosquito saliva which type of scale would be appropriate to prioritize a requirement that is mission critical? the equilibrium constant for a base ionization reaction is called the: select the correct answer below: a. base equilibrium constantb. base ionization constant c. basicity index d. none of the above Check all that apply about noSQL systems They provide eventual consistency instead of (or in addition to strong consistency They limit query capabilities, for example join capabilities They do not scale well They limit support for ACID transactions In building distributed systems, we want to allow transactions to have the familiar all-ar-nothing semantics. In addition, when replicas are supported, we would want the replicas to always have consistent states. Check all that apply. Atomicity under ACID is about all-or-nothing transactions - all the statements in a transaction execute or none of them do Consistency under ACID means that al nodes have the same state. Consistency under ACID means that the database guarantees all the integrity constraints of the database. Consistency under CAP means that all nodes have the same state. From a CAP perspective, a single system is a O AP system O CA system O CP system. It is possible to implement these rules in a database - this field is not null - this field is a variable length character string - this field is a key in another table A database will not allow you to commit a transaction that breaks these constraints. Check the correct answer This is consistency under ACID. This is consistency under CAP. This is consistency under both ACID or CAP. This is consistency but atomicity Which stage of the individual service plan process involves the collection of information that is used to create the individual service plan Using Newtons third law of motion, explaine how dolphins can move through the water? with a hydraulic press a vehicle with a mass of 1,140 kg is lifted using a piston with an area of A2=1.15m. On the other cylinder, a forze F1=182N is applied. what is the value of the area A1 of this cylinder? Which of the following mother country-colony associations is INCORRECT? a) SpainPhilippines b) BritainBurma c) NetherlandsBrunei d) FranceVietnam FILL IN THE BLANK. Gross ____ income includes all income earned from American-owned resources plus government revenue from taxes on production and imports. Solve for x. Round your answers to two decimal places.2x2 + 7x = 3 For Microsoft, brand recognition can be classified as a strength in the SWOT analysis. Select one: True O False What is an HR "dashboard"? Select one: O a. a software that tracks and graphically dis which of the following is true concerning cold weather driving 1. do the islands appear to be the same age, or are they older at one end of the chain or another? explain what evidence supports your conclusion