Answer:
B
Explanation:
Speed is the magnitude of the velocity vector, so it can never be negative.
An object can never have a negative velocity. Therefore, option (D) is correct.
What is velocity?Velocity is a vector quantity that describes an object's speed and direction of motion. If an object is moving in a positive direction, it has a positive velocity. If it is moving in the opposite direction, it has a negative velocity.
However, an object can never have a negative speed. Speed is a scalar quantity that describes an object's rate of motion, and it is always positive. The speed of an object can be positive or negative, depending on the direction of its velocity, but the magnitude of its speed is always positive.
Learn more about velocity, here:
https://brainly.com/question/18084516
#SPJ6
how can you rewrite the force formula (f=ma) to solve the acceleration?
The force formula can be rewritten to solve the acceleration as:
acceleration = force/mass.
What is acceleration?Acceleration is rate of change of velocity with time. Due to having both direction and magnitude, it is a vector quantity. Si unit of acceleration is meter/second² (m/s²).
What is force?The definition of force in physics is: The push or pull on a massed object changes its velocity. An external force is an agent that has the power to alter the resting or moving condition of a body. It has a direction and a magnitude.
From Newton's 2nd law of motion, we can write that:
Force = mass × acceleration
⇒ acceleration = force/mass.
Hence, the force formula can be rewritten to solve the acceleration as:
acceleration = force/mass.
Learn more about acceleration here:
brainly.com/question/12550364
#SPJ2
You are inside the Great Hall, 15 m from the north wall with the doors to the RMC, and centered between two open doors that are 3 m apart. Someone is blairing a 200 Hz tone outside the Great Hall so that it enters the doors as a plane wave. You hear a maximum intensity in your current position. As you walk along the direction of the wall with the doors (but maintain a distance 15 m from the wall), how far will you walk (in m) to hear a minimum in the sound intensity
Answer:
Δr = 0.425 m
Explanation:
This is a sound interference exercise, the expression for destructive interference is
Δr = (2n + 1) λ / 2
in this case the movement is in the same direction as the sound, therefore the movement is one-dimensional
let's use the relationship between the speed of sound and its frequency and wavelength
v = λ f
λ = v / f
the first minium occurs for n = 0
Δr = λ / 2
Δr = v / 2f
Δr = [tex]\frac{340}{2 \ 400}[/tex]
Δr = 0.425 m
this is the distance from the current position that we assume in the center of the room
If an ocean wave has a wavelength of 2 m and a frequency of 1 wave/s, then its speed is m/s Enter the answer Check it CRATCHPAD Improve this questic 트
Answer:
2m/s
Explanation:
v=f×wavelength
v=2×1
=2m/s
a 90 kilogram dog runs across the dog park at a speed of 6.5 meters per second. what is the magnitude and direction of the average force required to stop the dog in .85 seconds?
Answer:
am not sure about the answer
Explanation:
you need to find out the amount of force it's going in for example 10n or 100n then you need to times it the distance then devide by the time
An 80 N rightward force is applied to a 10 kg object to accelerate it to the right.
The object encounters a friction force of 50 N.
net force = 30 N
mass = 8.16 kg
acceleration = 3.68 m/s²
Further explanationGiven
80 N force applied
mass of object = 10 kg
Friction force = 50 N
Required
Net force
mass
acceleration
Solution
net forceNet force = force applied(to the right) - friction force(to the left)
Net force = 80 - 50 = 30 N
massGravitational force(downward) : F = mg
m = F : g
m = 80 : 9.8
m = 8.16 kg
accelerationa = F net / m
a = 30 / 8.16
a = 3.68 m/s²
There is a very long straw of charge that is uniformly charged in electro static equilibrium. It has a charge per unit length of 4.0E-9 C/m (4.0 nC/m) and a radius of 0.5 m. What is the strength of the electric field a distance of 10.0 m from its center outside the straw
Answer:
2880 N/c
Explanation:
Given that:
Charge per unit length ; λ = 4 * 10^-9
radius, r = 10
Radius, R = 0.5m
Using the relation :
2λr / 4πE0R²
Columb's constant, k = 1/4πE0 =. 9* 10^9Nm²/C²
Hence, we have :
2λrk/ R²
(2 * 4 * 10^-9 * 10 * 9 * 10^9) / 0.5^2
(720 ÷ 0.25)
= 2880 N/c
a. Use the graph and the element made in question 2 to determine the mass of the star.
What is the period, in seconds, that corresponds to each of
the following frequencies: (a) 10 Hz, (b) 0.2 Hz, (c) 60 Hz?
Answer:
0.1s,5s,0.017s
Explanation:
T=1÷frequency
Answer:
a =
✔ 6
The period is
✔ 2 seconds.
b =
✔ pi
Explanation:
Graph the function using the graphing calculator. Find the least positive value of t at which the pendulum is in the center.
t =
✔0.5 sec
To the nearest thousandth, find the position of the pendulum when t = 4.25 sec.
d =
✔ 4.243 in.