Therefore, the expected value of the amount the insurance company must pay is approximately 2.8748 units.
To determine the constant c and the expected value of the amount the insurance company must pay, we need to use the properties of a probability mass function (pmf) and expected value.
The pmf given is:
P(X = r) = c * 0.9^(r-1), for r = 1, 2, 3, 4, 5, 6
To find the constant c, we can use the fact that the sum of the probabilities for all possible values must equal 1:
∑ P(X = r) = 1
Substituting the pmf into the equation:
c * ∑ 0.9^(r-1) = 1
We can evaluate the sum:
∑ 0.9^(r-1) = 0.9^0 + 0.9^1 + 0.9^2 + 0.9^3 + 0.9^4 + 0.9^5
Using the formula for the sum of a geometric series, we find:
∑ 0.9^(r-1) = (1 - 0.9^6) / (1 - 0.9)
∑ 0.9^(r-1) = (1 - 0.59049) / 0.1
∑ 0.9^(r-1) = 0.40951 / 0.1
∑ 0.9^(r-1) = 4.0951
Now, we can solve for c:
c * 4.0951 = 1
c ≈ 0.2443
Therefore, the constant c is approximately 0.2443.
To find the expected value of the amount the insurance company must pay, we can use the formula for expected value:
E(X) = ∑ (r * P(X = r))
Substituting the pmf and the calculated value of c:
E(X) = ∑ (r * 0.2443 * 0.9^(r-1)), for r = 1, 2, 3, 4, 5, 6
E(X) = (1 * 0.2443 * 0.9^0) + (2 * 0.2443 * 0.9^1) + (3 * 0.2443 * 0.9^2) + (4 * 0.2443 * 0.9^3) + (5 * 0.2443 * 0.9^4) + (6 * 0.2443 * 0.9^5)
E(X) ≈ 0.2443 + 0.4398 + 0.5905 + 0.5905 + 0.5314 + 0.4783
E(X) ≈ 2.8748
To know more about insurance company,
https://brainly.com/question/15314149
#SPJ11
Is the function below continuous? If not, determine the x values where it is discontinuous. 2²-22-1 if f(x) = {21 *S-4 if -4
The function you provided is not complete and contains a typo, making it difficult to determine its continuity. However, based on the given information, it seems that the function is defined piecewise as follows:
f(x) = 21, if x < -4
To determine the continuity of the function, we need to check if it is continuous at the point where the condition changes. In this case, the condition changes at x = -4.
To determine if f(x) is continuous at x = -4, we need to evaluate the limit of f(x) as x approaches -4 from both the left and the right sides. If the two limits are equal to each other and equal to the value of f(x) at x = -4, then the function is continuous at x = -4.
Since we don't have the complete expression for f(x) after x = -4, we cannot determine its continuity or points of discontinuity based on the given information. Please provide the complete and correct function expression so that a proper analysis can be performed.
Visit here to learn more about function:
brainly.com/question/30721594
#SPJ11
The function you provided is not complete and contains a typo, making it difficult to determine its continuity. However, based on the given information, it seems that the function is defined piecewise as follows:
f(x) = 21, if x < -4
To determine the continuity of the function, we need to check if it is continuous at the point where the condition changes. In this case, the condition changes at x = -4.
To determine if f(x) is continuous at x = -4, we need to evaluate the limit of f(x) as x approaches -4 from both the left and the right sides. If the two limits are equal to each other and equal to the value of f(x) at x = -4, then the function is continuous at x = -4.
Since we don't have the complete expression for f(x) after x = -4, we cannot determine its continuity or points of discontinuity based on the given information. Please provide the complete and correct function expression so that a proper analysis can be performed.
Visit here to learn more about function:
brainly.com/question/30721594
#SPJ11
5.[10] Use l'Hospital's Rule to evaluate lim X sin X-X
The value of lim X sin X-X is 0
L'Hôpital's Rule, named after the French mathematician Guillaume de l'Hôpital, is a technique used to evaluate indeterminate forms of limits involving fractions. It provides a method to calculate limits by taking the derivative of the numerator and denominator of a fraction separately, and then examining the resulting ratio.
To evaluate the limit lim x→0 sin(x) - x using L'Hôpital's Rule, we can differentiate the numerator and denominator separately until we obtain an indeterminate form of the limit.
lim x→0 (sin(x) - x)
Check the indeterminate form
As x approaches 0, sin(x) - x evaluates to 0 - 0, which is not an indeterminate form. Therefore, we don't need to apply L'Hôpital's Rule.
The limit is simply:
lim x→0 (sin(x) - x) = 0 - 0 = 0
Thus, the value of the limit is 0.
Learn more about L'Hospital's rule here, https://brainly.com/question/31398208
#SPJ11
Let F(x,y,z)=<1,2,-1> Evaluate a) the line integral Sr. F. dr where C is a curve parametrized by ,(t) = for 1 € [-1,1] b) the surface integral STE F.ds where S is the suraface parameterized by r(u,v) = for u € [-1,1] > ] S and ye [0.2] ע
a) The value of the line integral Sr. F · dr is 4
b) The value of the surface integral STE F · ds is -6.
To evaluate the line integral and surface integral, we'll start by calculating the necessary components.
a) Line Integral:
The line integral of a vector field F along a curve C parameterized by r(t) = <x(t), y(t), z(t)> can be calculated using the formula:
∫(C) F · dr = ∫(a to b) F(r(t)) · r'(t) dt
Given F(x, y, z) = <1, 2, -1>, we have F(r(t)) = <1, 2, -1>, and the curve C is parameterized by r(t) = <t, t^2, 1>. Thus, we need to find r'(t) to evaluate the line integral.
r'(t) = <dx/dt, dy/dt, dz/dt> = <1, 2t, 0>
Now, let's calculate the line integral:
∫(C) F · dr = ∫(-1 to 1) F(r(t)) · r'(t) dt
= ∫(-1 to 1) <1, 2, -1> · <1, 2t, 0> dt
= ∫(-1 to 1) (1 + 4t) dt
= [t + 2t^2] from -1 to 1
= (1 + 2) - ((-1) + 2(-1)^2)
= 3 - (-1)
= 4
Therefore, the value of the line integral Sr. F · dr is 4.
b) Surface Integral:
The surface integral of a vector field F over a surface S parameterized by r(u, v) = <x(u, v), y(u, v), z(u, v)> can be calculated using the formula:
∫∫(S) F · ds = ∫∫(R) F(r(u, v)) · (ru x rv) dA
Given F(x, y, z) = <1, 2, -1>, we have F(r(u, v)) = <1, 2, -1>, and the surface S is parameterized by r(u, v) = <u, v, 1>. Thus, we need to find (ru x rv) and the bounds of integration.
ru = <∂x/∂u, ∂y/∂u, ∂z/∂u> = <1, 0, 0>
rv = <∂x/∂v, ∂y/∂v, ∂z/∂v> = <0, 1, 0>
ru x rv = <0, 0, 1>
The bounds of integration are u ∈ [-1, 1] and v ∈ [0, 2].
Now, let's calculate the surface integral:
∫∫(S) F · ds = ∫∫(R) F(r(u, v)) · (ru x rv) dA
= ∫∫(R) <1, 2, -1> · <0, 0, 1> dA
= ∫∫(R) -1 dA
Since -1 is a constant, the value of the surface integral is simply the negative of the area of the region R, which is a rectangle in this case. The area of the rectangle is given by the product of its side lengths: Δu * Δv.
Δu = 2 - (-1) = 3
Δv = 2 - 0 = 2
Area of R = Δu * Δv = 3 * 2 = 6
Therefore, the value of the surface integral STE F · ds is -6.
To know more about integrals, visit the link : https://brainly.com/question/22008756
#SPJ11
use separation of variables to find the general solution of the differential equation. (write your answer in the form f(x,y) = c, where c stands for an arbitrary constant.) dy/dx=4√(x/y) , or , dy/dx=(xy)1/4
Using separation of variables, the general solution of the differential equation dy/dx = 4√(x/y) or dy/dx = (xy)^(1/4) can be expressed as x^2/3y^(3/4) = c, where c is an arbitrary constant.
To solve the differential equation dy/dx = 4√(x/y) or dy/dx = (xy)^(1/4) using separation of variables, we begin by separating the variables x and y. We can rewrite the equation as √(y)dy = 4√(x)dx or y^(1/2)dy = 4x^(1/2)dx.
Next, we integrate both sides of the equation with respect to their respective variables. Integrating y^(1/2)dy gives (2/3)y^(3/2) and integrating x^(1/2)dx gives (2/3)x^(3/2).
Thus, we obtain (2/3)y^(3/2) = 4(2/3)x^(3/2) + C, where C is the constant of integration.
Simplifying the equation further, we have (2/3)y^(3/2) = (8/3)x^(3/2) + C.
Multiplying both sides by 3/2 to isolate y, we get y^(3/2) = (4/3)x^(3/2) + 2C/3.
Finally, raising both sides of the equation to the power of 2/3, we obtain the general solution of the differential equation as x^2/3y^(3/4) = c, where c = [(4/3)x^(3/2) + 2C/3]^(2/3) represents an arbitrary constant.
Learn more about differential equation here:
https://brainly.com/question/32538700
#SPJ11
Move the points B and C below and then answer the question posed. a = AB is changing at a rate of 5 m/s. b = AC is changing at a rate of 1v m/s. How fast is c = BCV changing? Change rate of BC (in m/s
The rate of change of c (BCV) is determined by the difference between the rates of change of a (AB) and b (AC). If a is changing at a rate of 5 m/s and b is changing at a rate of 1 m/s, then c is changing at a rate of 4 m/s.
Let's consider the triangle ABC, where a = AB, b = AC, and c = BCV. We want to find the rate of change of c, which can be determined by the difference between the rates of change of a and b.
Given that a is changing at a rate of 5 m/s and b is changing at a rate of 1 m/s, we can conclude that c will change at a rate of 4 m/s. This is because c is the difference between a and b (c = a - b).
To understand why this is the case, let's consider the positions of points B and C. As a increases by 5 m/s, the distance between points A and B grows at that rate. Similarly, as b increases by 1 m/s, the distance between points A and C increases at that rate. Since c is the difference between the distances AB and AC, its rate of change will be the difference between the rates of change of a and b. In this case, it is 4 m/s (5 m/s - 1 m/s).
Therefore, the rate of change of c (BCV) is 4 m/s.
Learn more about rate of change :
https://brainly.com/question/29181502
#SPJ11
Let f(x) = . Find the open intervals on which f is concave up (down). Then 6x2 + 8 determine the x-coordinates of all inflection points of f. 1. f is concave up on the intervals 2. f is co
The x-coordinates of all the inflection point of f are x = 3/2.
Given f(x) = [tex]4x^3 − 18x^2 − 16x + 9[/tex] To find open intervals where f is concave up (down), we need to find the second derivative of the given function f(x).
The second derivative of f(x) =[tex]4x^3 - 18x^2 - 6x + 9[/tex] is:f''(x) = 24x − 36 By analyzing f''(x), we know that the second derivative is linear. The sign of the second derivative of f(x) tells us about the concavity of the function:if f''(x) > 0, f(x) is concave up on the intervalif f''(x) < 0, f(x) is concave down on the interval
To find the x-coordinates of all the inflection point of f, we need to find the points at which the second derivative changes sign. The second derivative is zero when 24x − 36 = 0 ⇒ x = 36/24 = 3/2
So, the second derivative is positive for x > 3/2 and negative for x < 3/2. Therefore, we can conclude the following:1. f is concave up on the intervals (3/2, ∞)2. f is concave down on the intervals (−∞, 3/2)
The x-coordinates of all the inflection points of f are x = 3/2.
Learn more about inflection point here:
https://brainly.com/question/30767426
#SPJ11
Given that yı = e-t is a solution of the equation, ty" + (3t - 1)y + (2t - 1)y = 0, t > 0 find a second linearly independent solution using the reduction of order method.
The second linearly independent solution of the equation ty" + (3t - 1)y + (2t - 1)y = 0, where t > 0 and yı = e^-t is a solution, can be found using the reduction of order method. The second solution is [tex]y_2 = te^{-t}[/tex].
To find the second solution using the reduction of order method, we assume the second solution has the form y2 = u(t) * y1, where y1 = e^-t is the given solution.
We differentiate y2 with respect to t to find y2' and substitute it into the differential equation:
[tex]y_2' = u(t) * y_1' + u'(t) * y_1[/tex]
Plugging in [tex]y_1 = e^{-t}[/tex] and [tex]y_1' = -e^{-t}[/tex], we have:
[tex]y_2' = u(t) * (-e^{-t}) + u'(t) * e^{-t}[/tex]
Now we substitute y2 and y2' back into the differential equation:
[tex]t * (u(t) * (-e^{-t}) + u'(t) * e^{-t}) + (3t - 1) * (t * e^{-t}) + (2t - 1) * (te^{-t}) = 0[/tex]
Expanding and rearranging terms, we get:
[tex]t * u'(t) * e^{-t} = 0[/tex]
Since t > 0, we can divide both sides of the equation by t and e^-t to obtain:
u'(t) = 0
Integrating both sides with respect to t, we find:
u(t) = c
where c is an arbitrary constant. Therefore, the second linearly independent solution is [tex]y_2 = e^{-t}[/tex], where [tex]y_1 = e^{-t}[/tex] is the given solution.
In summary, using the reduction of order method, we find that the second linearly independent solution of the given differential equation is [tex]y_2 = e^{-t}[/tex].
Learn more about differential equation here:
https://brainly.com/question/25731911
#SPJ11
12. [-/1 Points] DETAILS SCALCET8 15.3.509.XP. Evaluate the iterated integral by converting to polar coordinates. 2 - y2 5(x + y) dx dy 1 To Need Help? Read It Watch It Submit Answer
The iterated integral can be evaluated becomes
∫[θ=0 to 2π] ∫[r=1/sinθ to 2/sinθ] (2 - (rsinθ)^2) (5(rcosθ + rsinθ)) r dr dθ
To evaluate the given iterated integral ∬(R) 2 - y^2 (5(x + y)) dA, where R is the region of integration, we can convert it to polar coordinates.
The region of integration, R, is not specified in the question. Therefore, we need to determine the bounds of integration based on the given limits of the integral.
Let's express the equation y = 2 - y^2 in terms of x and y to determine the boundary curves.
y = 2 - y^2
y^2 + y - 2 = 0
(y + 2)(y - 1) = 0
So, we have two curves:
y + 2 = 0 => y = -2
y - 1 = 0 => y = 1
The region R is bounded by the curves y = -2 and y = 1.
To convert to polar coordinates, we use the transformations:
x = rcosθ
y = rsinθ
Now, let's express the bounds of integration in terms of polar coordinates.
For y = -2, when y = rsinθ, we have:
rsinθ = -2
r = -2/sinθ
However, since r cannot be negative, we take the absolute value:
r = 2/sinθ
For y = 1, when y = rsinθ, we have:
rsinθ = 1
r = 1/sinθ
We also need to determine the bounds for θ. Since the integral is over the entire region, θ will go from 0 to 2π.
Now, we can set up the integral in polar coordinates:
∬(R) 2 - y^2 (5(x + y)) dA
∬(R) (2 - (rsinθ)^2) (5(rcosθ + rsinθ)) r dr dθ
The limits of integration are:
r: from 1/sinθ to 2/sinθ
θ: from 0 to 2π
Therefore, the integral becomes:
∫[θ=0 to 2π] ∫[r=1/sinθ to 2/sinθ] (2 - (rsinθ)^2) (5(rcosθ + rsinθ)) r dr dθ
Learn more about iterated integral at https://brainly.com/question/31756190
#SPJ11
Express the following as either a dr-, dy-, or dz-region (you choose which one you want to do): The region is in the first octant (that is, all of r, y, and 2 are > 0), and bounded by the coordinate planes and the plane 2r + 2y +32 = 6.
The given region can be expressed as a dy-region with the following limits of integration:
0 ≤ z ≤ 6 - 2r - 2y
0 ≤ r ≤ ∞
0 ≤ y ≤ -13 - r
Let's express the region bounded by the coordinate planes and the plane 2r + 2y + 32 = 6 as a dz-region.
To do this, we need to solve the equation 2r + 2y + 32 = 6 for z. Rearranging the equation, we have:
2r + 2y = 6 - 32
2r + 2y = -26
Dividing both sides by 2, we get:
r + y = -13
Now, we can express the region as a dz-region by setting up the limits of integration for r, y, and z:
0 ≤ r ≤ -13 - y
0 ≤ y ≤ -13 - r
0 ≤ z ≤ 6 - 2r - 2y
In this case, we can choose to express the region as a dy-region. To do so, we will integrate with respect to y first, followed by r.
The limits of integration for y are given by:
0 ≤ y ≤ -13 - r
Next, we integrate with respect to r, while considering the limits of integration for r:
0 ≤ r ≤ ∞
Finally, we integrate with respect to z, while considering the limits of integration for z:
0 ≤ z ≤ 6 - 2r - 2y
Therefore, the given region can be expressed as a dy-region with the following limits of integration:
0 ≤ z ≤ 6 - 2r - 2y
0 ≤ r ≤ ∞
0 ≤ y ≤ -13 - r
Learn more about coordinate planes here:
https://brainly.com/question/14462788
#SPJ11
solve
40x2y - 24xy2 + 48xy -8xy Factor: x2-3x - 28 Factor: 9x2 - 16 Factor: y3 - 4y2 - 25y + 100
Factor: x2 + 25
Solve: (4x + 1)(3x - 2) = 91
The solutions to the equation (4x + 1)(3x - 2) = 91 are x = 3 and x = -7. The given expressions are factored as follows:
40x^2y - 24xy^2 + 48xy - 8xy factors as 8xy(5x - 3y + 6 - x). For 40x^2y - 24xy^2 + 48xy - 8xy, we can factor out the common factor of 8xy, resulting in 8xy(5x - 3y + 6 - x).x^2 - 3x - 28 factors as (x - 7)(x + 4). To factor x^2 - 3x - 28, we look for two numbers whose product is -28 and sum is -3. The numbers -7 and 4 fit this criteria, so we can factor it as (x - 7)(x + 4).9x^2 - 16 factors as (3x - 4)(3x + 4). For 9x^2 - 16, we recognize it as the difference of squares, so we can factor it as (3x - 4)(3x + 4).y^3 - 4y^2 - 25y + 100 factors as (y - 5)(y + 5)(y - 4). To factor y^3 - 4y^2 - 25y + 100, we can use synthetic division or evaluate potential factors to find that (y - 5) is a factor. Dividing the polynomial by (y - 5), we get a quadratic expression, which can be further factored as (y + 5)(y - 4).x^2 + 25 cannot be further factored. The expression x^2 + 25 is a sum of squares and cannot be factored further.b) The equation (4x + 1)(3x - 2) = 91 can be solved by expanding and rearranging terms, leading to a quadratic equation. The solutions are x = 3 and x = -7/2.
Expanding the equation (4x + 1)(3x - 2), we get 12x^2 - 8x + 3x - 2 = 91. Simplifying further, we have 12x^2 - 5x - 93 = 0.
To solve the quadratic equation, we can factor it or use the quadratic formula. However, factoring is not straightforward in this case, so we can apply the quadratic formula: x = (-b ± √(b^2 - 4ac)) / (2a), where a = 12, b = -5, and c = -93. Substituting these values into the quadratic formula, we have x = (-(-5) ± √((-5)^2 - 4 * 12 * -93)) / (2 * 12).
Simplifying the expression inside the square root and evaluating, we get x = (5 ± √(2209)) / 24. Taking the positive and negative roots, we have x = (5 + 47) / 24 = 52 / 24 = 13/6 ≈ 2.17 and x = (5 - 47) / 24 = -42 / 24 = -7/4 = -1.75.
LEARN MORE ABOUT factors here: brainly.com/question/31931315
#SPJ11
The acceleration after seconds of a hawk flying along a straight path is a(t) 0.2 +0.14 1/8? How much did the hawk's speed increase from 5 to t? 279 X TV Additional Materials Book
The change in the hawk's speed is determined as 0.81 ft/s.
What is the change in the hawk's speed?The change in the hawk's speed is calculated by applying the following formula.
The given acceleration of the hawk;
a(t) = (0.2 +0.14t) ft/s²
The increase in the speed of the hawk from t = 5 seconds to t = 8 seconds is calculated as follows;
v = ∫ a(t) dt
So will integrate the acceleration as follows;
v = ∫ [5, 8] ((0.2 +0.14t))
v = [5, 8] (0.2t + 0.14t²/2 )
v = [5, 8] ( 0.2t + 0.07t²)
Substitute the intervals of the integration as follows;
v = (0.2 x 8 + 0.07 x 8) - (0.2 x 5 + 0.07 x 5)
v = 2.16 - 1.35
v = 0.81 ft/s
Learn more about change in speed here: https://brainly.com/question/25749514
#SPJ1
The complete question is below;
The acceleration after seconds of a hawk flying along a straight path is a(t) = 0.2 +0.14t ft/s² How much did the hawk's speed increase from t = 5 to t = 8?
A water balloon is launched in the air from a height of 12 feet and reaches a maximum height of 37 feet after 1.25 seconds. Write an equation to represent the height h of the water balloon at time T seconds. Them, find the height of the balloon at 2 seconds.
The height of the water balloon at 2 seconds is -36.3 feet.
To find an equation representing the height of the water balloon at time T seconds, we can use the equation of motion for an object in free fall:
h = h₀ + v₀t + (1/2)gt²
Where:
h is the height of the object at time T
h₀ is the initial height (12 feet in this case)
v₀ is the initial velocity (which we need to determine)
t is the time elapsed (T seconds in this case)
g is the acceleration due to gravity (approximately 32.2 ft/s²)
Since the water balloon reaches a maximum height of 37 feet after 1.25 seconds, we can use this information to find the initial velocity. At the maximum height, the vertical velocity becomes zero (the balloon momentarily stops before falling back down). So, we can set v = 0 and t = 1.25 seconds in the equation to find v₀:
0 = v₀ + gt
0 = v₀ + (32.2 ft/s²)(1.25 s)
0 = v₀ + 40.25 ft/s
Solving for v₀:
v₀ = -40.25 ft/s
Now we have the initial velocity. We can substitute the values into the equation:
h = 12 + (-40.25)T + (1/2)(32.2)(T²)
To find the height of the balloon at 2 seconds (T = 2), we can plug in T = 2 into the equation:
h = 12 + (-40.25)(2) + (1/2)(32.2)(2²)
h = 12 - 80.5 + (1/2)(32.2)(4)
h = 12 - 80.5 + 16.1
h = -52.4 + 16.1
h = -36.3
Therefore, the height of the water balloon at 2 seconds is -36.3 feet.
for such more question on height
https://brainly.com/question/23377525
#SPJ8
DETAILS SCALCET9 7.1.015. Evaluate the integral. (Use C for the constant of integration.) Jeine In(t) dt 5. DETAILS SCALCET9 7.2.001.MI. Evaluate the integral. (Use C for the constant of integration.) 9 sin?(x) cos 3(x) dx 6. DETAILS SCALCET9 7.3.010. Evaluate the integral. (Use C for the constant of integration.) - -2 IT dx V 81 - x2
The integral is equal to -2√(81 - x²) + c.
1. ∫ ln(t) dt = t ln(t) - t + c
to evaluate the integral of ln(t) dt, we use integration by parts. let u = ln(t) and dv = dt. taking the derivatives and integrals, we find du = (1/t) dt and v = t. applying the integration by parts formula ∫ u dv = uv - ∫ v du, we get:
∫ ln(t) dt = t ln(t) - ∫ t (1/t) dt
= t ln(t) - ∫ dt = t ln(t) - t + c
2. ∫ 9 sin²(x) cos³(x) dx = -3/5 cos⁵(x) + c
explanation:
to evaluate the integral of 9 sin²(x) cos³(x) dx, we use trigonometric identities and simplification. by using the identity sin²(x) = (1 - cos²(x)), we rewrite the integral as:
∫ 9 sin²(x) cos³(x) dx = ∫ 9 (1 - cos²(x)) cos³(x) dx = ∫ 9 cos³(x) - 9 cos⁵(x) dx
now, we can integrate term by term. by using the power rule for integration and simplifying the terms, we find:
∫ 9 sin²(x) cos³(x) dx = -3/5 cos⁵(x) + c
3. ∫ -2x / √(81 - x²) dx = -√(81 - x²) + c
explanation:
to evaluate the integral of -2x / √(81 - x²) dx, we use a trigonometric substitution. let x = 9sin(θ), which implies dx = 9cos(θ)dθ, and substitute these values into the integral:
∫ -2x / √(81 - x²) dx = ∫ -2(9sin(θ)) / √(81 - (9sin(θ))²) (9cos(θ)dθ) = ∫ -18sin(θ) / √(81 - 81sin²(θ)) dθ
= -∫ 18sin(θ) / √(81cos²(θ)) dθ = -∫ 18sin(θ) / (9cos(θ)) dθ
= -2∫ sin(θ) dθ = -2(-cos(θ)) + c
since x = 9sin(θ), we can use the pythagorean identity sin²(θ) + cos²(θ) = 1 to find cos(θ) = √(1 - sin²(θ)). plugging this into the previous expression, we get:
∫ -2x / √(81 - x²) dx = -2(-cos(θ)) + c
= -2(-√(1 - sin²(θ))) + c = -2(-√(1 - (x/9)²)) + c
= -2√(81 - x²) + c
Learn more about integrate here:
https://brainly.com/question/30217024
#SPJ11
(15 points) Evaluate the integral 2+√4-x²-y² INN (x² + y² +2²)³/2dzdydr 4- -y²
The integral ∫∫∫ (2 + √(4 - x² - y²)) / (x² + y² + 2²)^(3/2) dz dy dr evaluates to a specific numerical value.
To evaluate the given triple integral, we use cylindrical coordinates (r, θ, z) to simplify the expression. The limits of integration are not provided, so we assume them to be appropriate for the problem. The integral becomes ∫∫∫ (2 + √(4 - r²)) / (r² + 4)^(3/2) dz dy dr.
To solve this integral, we proceed by integrating in the order dz, dy, and dr. The integrals involved may require trigonometric substitutions or other techniques, depending on the limits and the specific values of r, θ, and z. Once all three integrals are evaluated, the result will be a specific numerical value.
Learn more about Integration here: brainly.com/question/31744185
#SPJ11
Problem 1. Differentiate the following functions: a. (6 points) er" ln(z) - cos(-) tan(2x) b. (6 points) In(tan(2) - sec(x))
The derivatives of the given functions are:
a. f'(x) = (2e^(2x)) ln(z) + (sin(-x))(2sec^2(2x))
b. g'(x) = sec(x) tan(x)
a. To differentiate the function f(x) = e^(2x) ln(z) - cos(-x) tan(2x), we will use the product rule and the chain rule.
Let's differentiate each term separately:
Differentiating e^(2x) ln(z):
The derivative of e^(2x) with respect to x is 2e^(2x) using the chain rule.
The derivative of ln(z) with respect to z is 1/z using the derivative of natural logarithm.
Therefore, the derivative of e^(2x) ln(z) with respect to x is (2e^(2x)) ln(z).
Differentiating cos(-x) tan(2x):
The derivative of cos(-x) with respect to x is sin(-x) using the chain rule.
The derivative of tan(2x) with respect to x is 2sec^2(2x) using the derivative of tangent.
Therefore, the derivative of cos(-x) tan(2x) with respect to x is (sin(-x))(2sec^2(2x)).
Now, combining both derivatives using the product rule, we have:
f'(x) = (2e^(2x)) ln(z) + (sin(-x))(2sec^2(2x))
b. To differentiate the function g(x) = ln(tan(2) - sec(x)), we will use the chain rule.
Let's differentiate the function term by term:
Differentiating ln(tan(2)):
The derivative of ln(tan(2)) with respect to x is 0 since tan(2) is a constant.
Differentiating ln(sec(x)):
The derivative of ln(sec(x)) with respect to x is sec(x) tan(x) using the derivative of logarithm and the derivative of secant.
Now, combining both derivatives, we have:
g'(x) = 0 + sec(x) tan(x) = sec(x) tan(x)
Learn more about derivatives at https://brainly.com/question/27072366
#SPJ11
Find the profit function if cost and revenue are given by C(x) = 140 + 1.4x and R(x) = 4x -0.06x². . The profit function is P(x)=
The profit function is P(x) = - 0.06x² + 2.6x - 140. Let us first recall the definition of the profit function: Profit Function is defined as the difference between the Revenue Function and the Cost Function.
P(x) = R(x) - C(x)
Where,
P(x) is the profit function
R(x) is the revenue function
C(x) is the cost function
Given,
C(x) = 140 + 1.4x ...(1)
R(x) = 4x - 0.06x² ...(2)
We need to find the profit function P(x)
We know,
P(x) = R(x) - C(x)
By substituting the given values in the above equation, we get,
P(x) = (4x - 0.06x²) - (140 + 1.4x)
On simplification,
P(x) = 4x - 0.06x² - 140 - 1.4x
P(x) = - 0.06x² + 2.6x - 140
The profit function is given by P(x) = - 0.06x² + 2.6x - 140.
To learn more about profit function refer:-
https://brainly.com/question/10950598
#SPJ11
5. The height in metres, above the ground of a car as a Ferris wheel rotates can be modelled by the function h(t) = 16cos +18, where t is the time in seconds. What is the height of a rider after 15 second
The height of the rider after 15 seconds is approximately 33.4548124213 meters above the ground.
The given function h(t) = 16cos(t) + 18 represents the height above the ground of a rider on a Ferris wheel as a function of time in seconds. To find the height of the rider after 15 seconds, we substitute t = 15 into the equation:
h(15) = 16cos(15) + 18
Evaluating the cosine of 15 degrees using a calculator, we find that cos(15) is approximately 0.96592582628. Plugging this value into the equation, we get:
h(15) = 16 * 0.96592582628 + 18
≈ 15.4548124213 + 18
≈ 33.4548124213
Therefore, the height of the rider after 15 seconds is approximately 33.4548124213 meters above the ground.
Learn more about cosine here:
https://brainly.com/question/29114352
#SPJ11
A high-speed bullet train accelerates and decelerates at the
rate of 10 ft/s210 ft/s2. Its maximum cruising speed is 105 mi/h105
mi/h. (Round your answers to three decimal places.)
(a) What is the max
Score on last try: 0 of 1 pts. See Details for more. You can retry this question below A high-speed bullet train accelerates and decelerates at the rate of 10 ft/s². Its maximum cruising speed is 105
A high-speed bullet train accelerates and decelerates at the rate of 10 ft/s². Its maximum cruising speed is 105 . Given information: Acceleration and deceleration rate: 10 ft/s². Maximum cruising speed: 105 mi/h.
To convert the maximum cruising speed from miles per hour to feet per second, we need to consider the conversion factors: 1 mile = 5280 feet
1 hour = 3600 seconds.
First, let's convert the maximum cruising speed from miles per hour to feet per second:105 mi/h * (5280 ft/mi) / (3600 s/h) = 154 ft/s (rounded to three decimal places). Therefore, the maximum cruising speed of the bullet train is 154 ft/s.A high-speed bullet train accelerates and decelerates at the rate of 10 ft/s210 ft/s2. Its maximum cruising speed is 105 mi/h105 mi/h.
To Learn more about Acceleration click here : brainly.com/question/2303856
#SPJ11
If X has an exponential (1) PDF, what is the PDF of W = X2? 5.9.1 Random variables X and Y have joint PDF fx,y(, y) = ce -(x²/8)–(42/18) What is the constant c? Are X and Y in- dependent? 6.4.1 Random variables X and Y have joint PDF fxy(x, y) = 6xy 0
The answer of 1. The probability density function (PDF) of [tex]W = X^2[/tex] when X has an exponential (1) PDF and 2. The X and Y are dependent random variables.
The PDF of [tex]W = X^2[/tex], where X has an exponential (1) distribution, is given by [tex]\lambda e^{(-\lambda \sqrt w)} * 1/(2w^{(1/2)})[/tex]. X and Y are dependent random variables based on their joint PDF.
1. If X has an exponential (1) probability density function (PDF), we can find the PDF of [tex]W = X^2[/tex] using the method of transformations.
Let's denote the PDF of X as fX(x). Since X has an exponential (1) distribution, its PDF is given by:
[tex]fX(x) = \lambda e^{(-\lambda x)}[/tex]
where λ = 1 in this case.
To find the PDF of [tex]W = X^2[/tex], we need to apply the transformation method. Let [tex]Y = g(X) = X^2[/tex]. The inverse transformation is given by X = h(Y) = √Y.
To find the PDF of W, we can use the formula:
fW(w) = fX(h(w)) * |dh(w)/dw|
Substituting the values:
fW(w) = fX(√w) * |d√w/dw|
Taking the derivative:
d√w/dw = 1/(2√w) = [tex]1/(2w^{(1/2)})[/tex]
Substituting back into the equation:
[tex]fW(w) = fX(\sqrt w) * 1/(2w^{(1/2)})[/tex]
Since fX(x) = [tex]\lambda e^{(-\lambda x)}[/tex], we have:
fW(w) = [tex]\lambda e^{(-\lambda x)}[/tex] [tex]* 1/(2w^{(1/2))}[/tex]
This is the probability density function (PDF) of [tex]W = X^2[/tex] when X has an exponential (1) PDF.
2. To find the constant c for the joint probability density function (PDF) fx,y(x, y) = [tex]ce^{(-(x^2/8) - (4y^2/18))[/tex], we need to satisfy the condition that the PDF integrates to 1 over the entire domain.
The condition for a PDF to integrate to 1 is:
∫∫ f(x, y) dx dy = 1
In this case, we have:
∫∫ [tex]ce^{(-(x^2/8) - (4y^2/18)) }dx dy = 1[/tex]
To find the constant c, we need to evaluate this integral. However, the limits of integration are not provided, so we cannot determine the exact value of c without the specific limits.
Regarding the independence of X and Y, we can determine it by checking if the joint PDF fx,y(x, y) can be factored into the product of individual PDFs for X and Y.
If fx,y(x, y) = fx(x) * fy(y), then X and Y are independent random variables.
However, based on the given joint PDF fx,y(x, y) = [tex]ce^{(-(x^2/8) - (4y^2/18))[/tex], we can see that it cannot be factored into separate functions of X and Y. Therefore, X and Y are dependent random variables.
To learn more about exponential from the given link
https://brainly.com/question/30241796
#SPJ4
8|8 Homework: Hw 6.2 For the function z = -8 11 -8x³-5y²2-5xy, find Question Viewer dz dz d dx dy x 2(5,-5), and Question 1, 6.2.3 Part 1 of 4 ayz(5,-5). ****
To find the partial derivatives of the function z = -8x³ - 5y² + 2xy, we calculate dz/dx, dz/dy, dz/dx(5, -5), and dz/dy(5, -5). We also need to determine the value of ayz(5, -5) for question 6.2.3, part 1 of 4.
To find dz/dx, we differentiate the function z = -8x³ - 5y² + 2xy with respect to x while treating y as a constant. The derivative of -8x³ with respect to x is -24x², and the derivative of 2xy with respect to x is 2y. Thus, dz/dx = -24x² + 2y.
To find dz/dy, we differentiate the function z = -8x³ - 5y² + 2xy with respect to y while treating x as a constant. The derivative of -5y² with respect to y is -10y, and the derivative of 2xy with respect to y is 2x. Therefore, dz/dy = -10y + 2x.
To find dz/dx(5, -5), we substitute x = 5 and y = -5 into dz/dx: dz/dx(5, -5) = -24(5)² + 2(-5) = -600 - 10 = -610.
Similarly, to find dz/dy(5, -5), we substitute x = 5 and y = -5 into dz/dy: dz/dy(5, -5) = -10(-5) + 2(5) = 50 + 10 = 60.
Lastly, to find ayz(5, -5) for question 6.2.3, part 1 of 4, we substitute x = 5 and y = -5 into the given function z: ayz(5, -5) = -8(5)³ - 5(-5)² + 2(5)(-5) = -200 - 125 - 50 = -375.
Therefore, dz/dx = -24x² + 2y, dz/dy = -10y + 2x, dz/dx(5, -5) = -610, dz/dy(5, -5) = 60, and ayz(5, -5) = -375.
To learn more about partial derivatives: -brainly.com/question/28750217#SPJ11
in a binomial probability distribution, each trial is __________of every other trial. a. contingent b. dependent c. independent d. both dependent and independen
In a binomial probability distribution, each trial is independent of every other trial. c. independent
In a binomial probability distribution, each trial is independent of every other trial. This means that the outcome of one trial does not affect the outcome of any other trial. Each trial has the same probability of success or failure, and the outcomes are not influenced by previous or future trials.
Independence means that the probability of success or failure in one trial remains the same regardless of the outcomes of previous or future trials. Each trial is treated as a separate and unrelated event.
For example, let's consider flipping a fair coin. Each flip of the coin is an independent trial. The outcome of the first flip, whether it is heads or tails, has no influence on the outcome of subsequent flips. The probability of getting heads or tails remains the same for each individual flip.
Learn more about binomial probability here:
https://brainly.com/question/12474772
#SPJ11
Select the correct answer from the drop-down menu.
Find the polynomial.
{-1,4} is the solution set of
The quadratic equation whose roots are x = - 1 / 3 and x = 4 is equal to 3 · x² - 11 · x - 4.
How to find a quadratic equation
Algebraically speaking, we can form an quadratic equation from the knowledge of two distinct roots and the use of the following expression:
y = (x - r₁) · (x - r₂)
If we know that r₁ = - 1 / 3 and r₂ = 4, then the quadratic equation is:
y = (x + 1 / 3) · (x - 4)
y = x² - (11 / 3) · x - 4 / 3
If we multiply each side by 3, then we find the following expression:
3 · y = 3 · x² - 11 · x - 4
To learn more on quadratic equation: https://brainly.com/question/29269455
#SPJ1
Correct answer gets brainliest!!!
Answer:
It's a two dimensional object............
During the month of January, "ABC Appliances" sold 37 microwaves, 21 refrigerators and 20 stoves, while "XYZ Appliances" sold 58 microwaves, 28 refrigerators and 48 stoves. During the month of February, "ABC Appliances" sold 44 microwaves, 40 refrigerators and 23 stoves, while "XYZ Appliances" sold 52 microwaves, 27 refrigerators and 38 stoves. a. Write a matrix summarizing the sales for the month of January. (Enter in the same order that the information was given.) Preview b. Write a matrix summarizing the sales for the month of February. (Enter in the same order that the information was given.) Preview c. Use matrix addition to find a matrix summarizing the total sales for the months of January and February Preview Get Help: VIDEO Written Example
(a) The matrix summarizing the sales for the month of January is:
[37 21 20]
[58 28 48]
The first row represents the sales of ABC Appliances, and the second row represents the sales of XYZ Appliances. The columns represent the number of microwaves, refrigerators, and stoves sold, respectively.
(b) The matrix summarizing the sales for the month of February is:
[44 40 23]
[52 27 38]
Again, the first row represents the sales of ABC Appliances, and the second row represents the sales of XYZ Appliances. The columns represent the number of microwaves, refrigerators, and stoves sold, respectively.
(c) To find the matrix summarizing the total sales for the months of January and February, we perform matrix addition by adding the corresponding elements of the January and February matrices. The resulting matrix is:
[37+44 21+40 20+23]
[58+52 28+27 48+38]
Simplifying the calculations, we have:
[81 61 43]
[110 55 86]
This matrix represents the total number of microwaves, refrigerators, and stoves sold by both ABC Appliances and XYZ Appliances for the months of January and February. The values in each cell indicate the total sales for the corresponding product category.
learn more about matrix here:
https://brainly.com/question/28180105
#SPJ11
Find the intervals on which fis increasing and the intervals on which it is decreasing. f(x) = 10-x? Select the correct choice below and, if necessary, fill in the answer box(es) to complete your choice. A. The function is increasing on the open interval(s) and decreasing on the open interval(s) (Simplify your answers. Type your answers in interval notation. Use a comma to separate answers as needed.) B. The function is increasing on the open interval(s). The function is never decreasing. (Simplify your answer. Type your answer in interval notation. Use a comma to separate answers as needed.) The function is decreasing on the open interval(s). The function is never increasing. (Simplify your answer. Type your answer in interval notation. Use a comma to separate answers as needed.) D. The function is never increasing nor decreasing.
For the given function f(x) = 10 - x, the function is never increasing. (option c)
To determine the intervals on which the function is increasing or decreasing, we need to examine the slope of the function. The slope of a function represents the rate at which the function is changing. In this case, the slope of f(x) = 10 - x is -1, which means that the function is decreasing at a constant rate of 1 as we move along the x-axis.
Since the slope is negative (-1), the function is always decreasing. This means that the function f(x) = 10 - x is decreasing on the entire domain. Therefore, we can conclude that the function is never increasing.
The correct answer choice for this question is C. The function is never increasing.
To know more about function here
https://brainly.com/question/28193995
#SPJ4
what is the number if k% of it is 2a?
The number, x, is equal to (2a) × (100/k).
Let's denote the number as "x." We are given that k% of x is equal to 2a.
To find the number, we need to translate the given information into an equation. The phrase "k% of x" can be expressed as (k/100) × x.
According to the given information, (k/100) × x is equal to 2a:
(k/100) × x = 2a.
To solve for x, we can isolate it on one side of the equation by dividing both sides by (k/100):
x = (2a) / (k/100).
To simplify further, we can multiply by the reciprocal of (k/100), which is (100/k):
x = (2a) × (100/k).
Therefore, the number, x, is equal to (2a) × (100/k).
In summary, if k% of a number is equal to 2a, the number itself can be calculated as (2a) × (100/k).
for such more question on number
https://brainly.com/question/859564
#SPJ8
Question #3 C8: "Find the derivative of a function using a combination of Product, Quotient and Chain Rules, or combinations of these and basic derivative rules." Use "shortcut" formulas to find Dx[lo
The Product Rule is used to differentiate the product of two functions, the Quotient Rule is used for differentiating the quotient of two functions, and the Chain Rule is used to differentiate composite functions.
The derivative of a function can be found using a combination of derivative rules depending on the form of the function.
For example, to differentiate a product of two functions, f(x) and g(x), we can use the Product Rule: d(fg)/dx = f'(x)g(x) + f(x)g'(x).
To differentiate a quotient of two functions, f(x) and g(x), we can use the Quotient Rule: d(f/g)/dx = (f'(x)g(x) - f(x)g'(x))/[g(x)]².
For composite functions, where one function is applied to another, we use the Chain Rule: d(f(g(x)))/dx = f'(g(x))g'(x).
By applying these rules, along with basic derivative rules for elementary functions such as power, exponential, and trigonometric functions, we can find the derivative of a function. The specific combination of rules used depends on the structure of the given function, allowing us to simplify and differentiate it appropriately.
Learn more about Quotient Rule here:
https://brainly.com/question/30278964
#SPJ11
The average amount of money spent for lunch per person in the college cafeteria is $7.15 and the standard deviation is $2.64. Suppose that 46 randomly selected lunch patrons are observed. Assume the distribution of money spent is normal, and round
all answers to 4 decimal placeswhere possible.
a. What is the distribution of X? X - b. What is the distribution of «? Xl) c. For a single randomly selected lunch patron, find the probability that this
patron's lunch cost is between $6.6362 and $7.0208. d. For the group of 46 patrons, find the probability that the average lunch cost is
between $6.6362 and $7.0208.
e. For part d), is the assumption that the distribution is normal necessary? O NO
Yes
a. The distribution of X (individual lunch cost) is normal.
b. The distribution of the sample mean, denoted as X (average lunch cost), is also normal.
to the Central Limit Theorem, for a sufficiently large sample size, the distribution of the sample mean becomes approximately normal, regardless of the distribution of the population.
c. To find the probability that a single randomly selected lunch patron's cost is between $6.6362 and $7.0208, we can standardize the values using z-scores and then use the standard normal distribution table or a z-score calculator. The z-score formula is:
z = (x - μ) / σ
Where x is the given value, μ is the population mean ($7.15), and σ is the population standard deviation ($2.64).
Once you have the z-scores for $6.6362 and $7.0208, you can find the corresponding probabilities using the standard normal distribution table or a calculator.
d. For the group of 46 patrons, to find the probability that the average lunch cost is between $6.6362 and $7.0208, we need to use the sample mean (x) and the standard error of the mean (σ/√n). The standard error formula is:
Standard Error = σ / √n
Where σ is the population standard deviation ($2.64) and n is the sample size (46).
Then, we can calculate the z-scores for $6.6362 and $7.0208 using the sample mean and the standard error. Afterward, we can use the standard normal distribution table or a calculator to find the corresponding probabilities.
e. Yes, the assumption that the distribution is normal is necessary for part d) because we are using the Central Limit Theorem, which assumes that the distribution of the population is normal, or the sample size is sufficiently large for the sample mean to approximate a normal distribution.
Learn more about probability here:
https://brainly.com/question/32117953
#SPJ11
Find the power series representation 4.) f(x) = (1 + x)²/3 of # 4-6. State the radius of convergence. 5.) f(x) = sin x cos x (hint: identity) 6.) f(x)=x²4x
(4)[tex]f(x) = (1 + x)^\frac{2}{3} = 1 + (\frac{2}{3})x - (\frac{2}{9})x^2 + (\frac{8}{81})x^3 + ...[/tex] ,and the convergence radius is 1.
(5)[tex]f(x) =x - (\frac{2}{3!})x^3 + (\frac{2}{5!})x^5 - (\frac{2}{7!})x^7 + ...[/tex] ,and the convergence radius is infinity
(6)[tex]f(x) = x^2 + 4x[/tex] , and the convergence radius for this power series is also infinity
What is the power series?
A power series can be used to approximate functions, especially when the function cannot be expressed in a simple algebraic form. By considering more and more terms in the series, the approximation becomes more accurate within a specific range of the variable.that represents a function as a sum of terms involving powers of a variable (usually denoted as x). It has the general form:
f(x) = a₀ + a₁x + a₂x² + a₃x³ + ...
Each term in the series consists of a coefficient (a₀, a₁, a₂, ...) multiplied by the variable raised to an exponent (x⁰, x¹, x², ...). The coefficients can be constants or functions of other variables.
(4)To find the power series representation of [tex]f(x) = (1 + x)^\frac{2}{3}[/tex], we can expand it using the binomial series for [tex](1 + x)^\frac{2}{3}[/tex]is given by:
[tex](1 + x)^n = C(n,0) + C(n,1)x + C(n,2)x^2 + C(n,3)x^3 + ...[/tex]
where C(n,k) represents the binomial coefficient.
In this case, n = [tex]\frac{2}{3}[/tex]. Let's calculate the first few terms:
[tex]C(\frac{2}{3}, 0) = 1 \\\\C(\frac{2}{3}, 1) = \frac{2}{3} \\\\C(\frac{2}{3}, 2) = (\frac{2}{3})(-\frac{1}{3}) = -\frac{2}{9} \\C(\frac{2}{3}, 3) = (-\frac{2}{9})(-\frac{4}{9})(\frac{1}{3}) = \frac{8}{81}[/tex]
So the power series representation becomes:
[tex]f(x) = (1 + x)^\frac{2}{3} = 1 + (\frac{2}{3})x - (\frac{2}{9})x^2 + (\frac{8}{81})x^3 + ...[/tex]
The radius of convergence for this power series is determined by the interval of x values for which the series converges. In this case, the radius of convergence is 1, which means the power series representation is valid for |x| < 1.
(5)To find the power series representation of f(x) = sin(x)cos(x), we can use the trigonometric identities. The identity sin(2x) = 2sin(x)cos(x) can be rearranged to solve for sin(x)cos(x):
sin(x)cos(x) = [tex]\frac{1}{2}[/tex]sin(2x)
We know the power series representation for sin(2x) is:
[tex]sin(2x) = 2x - (\frac{4}{3!})x^3 + (\frac{4}{5!})x^5 - (\frac{4}{7!})x^7 + ...[/tex]
Substituting this back into the previous equation:
[tex]sin(x)cosx =\frac{ 2x - (\frac{4}{3!})x^3 + (\frac{4}{5!})x^5 - (\frac{4}{7!})x^7 + ...}{2}[/tex]
Simplifying, we get:
[tex]f(x) =x - (\frac{2}{3!})x^3 + (\frac{2}{5!})x^5 - (\frac{2}{7!})x^7 + ...[/tex]
The radius of convergence for this power series is determined by the interval of x values for which the series converges. In this case, the radius of convergence is infinity, which means the power series representation is valid for all real values of x.
(6)To find the power series representation of [tex]f(x) = x^2 + 4x[/tex], we can simply express it as a polynomial. The power series representation of a polynomial is the polynomial itself.
So the power series representation for [tex]f(x) = x^2 + 4x[/tex] is the same as the original expression:
[tex]f(x) = x^2 + 4x[/tex]
The radius of convergence for this power series is also infinity, which means the power series representation is valid for all real values of x.
To learn more about the power series from the link
https://brainly.com/question/28158010
#SPJ4
= 13. Find the torque produced by a cyclist exerting a force of F = [45, 90, 130]N on the shaft- pedal d = [12, 17, 14]cm long. a) (-950, 930, -315) b) 3890 c) 19874 d) 1866625
The torque produced by a cyclist exerting a force of F = [45, 90, 130]N on the shaft- pedal d = [12, 17, 14]cm long is (-950, 930, -315). So the correct option is (a) (-950, 930, -315).
The torque produced by a cyclist exerting a force of F = [45, 90, 130]N on the shaft- pedal d = [12, 17, 14]cm long can be found out using the formula:τ = r × F Torque = r cross product F
where,r is the distance vector from the point of application of force to the axis of rotation F is the force vectora) (-950, 930, -315) is the torque produced by a cyclist exerting a force of F = [45, 90, 130]N on the shaft- pedal d = [12, 17, 14]cm long.
For more questions on: torque
https://brainly.com/question/30889398
#SPJ8